Academic literature on the topic 'Helmholtz Model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Helmholtz Model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Helmholtz Model"

1

Tang, H., and S. Zhong. "A static compressible flow model of synthetic jet actuators." Aeronautical Journal 111, no. 1121 (2007): 421–31. http://dx.doi.org/10.1017/s0001924000004681.

Full text
Abstract:
Abstract In this paper, a simple static compressible flow model for circular synthetic jet actuators is described. It is used to undertake a systematic computational investigation of the effect of changing actuator geometrical and operating parameters on the magnitude of peak jet velocity at the orifice exit of an actuator whose diaphragm displacement and frequency are allowed to vary independently. It is found that, depending on the flow conditions inside the orifice duct, the actuator may operate in two distinct regimes, i.e. the Helmholtz resonance regime and the viscous flow regime. In the Helmholtz resonance regime, the resultant synthetic jet is generated by the mass physically displaced by the oscillating diaphragm coupled with the Helmholtz resonance in the actuator. In the viscous flow regime, the Helmholtz resonance is completely damped by viscous effect such that the jet is produced by the diaphragm oscillation alone. The relationship between actuator geometrical and operating parameters at the optimum condition which yields the maximum peak jet velocity at a given diaphragm displacement is also established for these two regimes. Finally, a preliminary procedure for designing synthetic jet actuators for flow separation control on an aircraft wing is proposed.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Xin, Yuanyu Yu, Jiujiang Wang, Sio Hang Pun, Mang I. Vai, and Peng Un Mak. "An Analytical Model for Bandwidth Enhancement of Air-Coupled Unsealed Helmholtz Structural CMUTs." Journal of Sensors 2019 (April 17, 2019): 1–16. http://dx.doi.org/10.1155/2019/3896965.

Full text
Abstract:
Capacitive micromachined ultrasonic transducers (CMUTs) were reported to own high potential in air-coupled ultrasonic applications such as noncontact nondestructive examination and gas flow measurement. The unsealed CMUTs which utilized the squeeze film effect were reported to overcome the narrow output pressure bandwidth of the conventional sealed CMUTs in air operation. This kind of unsealed CMUTs can also be regarded as Helmholtz resonators. In this work, we present the air-coupled unsealed Helmholtz structural CMUTs which utilize both the squeeze film effect and the Helmholtz resonant effect to enhance the output pressure bandwidth. Based on the mechanism of vibration coupling between membrane and air pistons in membrane holes, we propose an analytical model to aid the design process of this kind of CMUTs. We also use finite element method (FEM) to investigate this kind of CMUTs for our analytical model validation. The FEM results show that the significant bandwidth enhancement can be achieved when the Helmholtz resonant frequency is designed close to the fundamental resonant frequency of the CMUT membrane. Compared with the conventional sealed CMUT cell, the 4-hole unsealed Helmholtz structural CMUT cell improves both the 3-dB fractional bandwidth and SPL-bandwidth product around 35 times. Furthermore, it is found that, with more holes under the same hole area ratio or with a smaller ratio of the cavity height to the viscous boundary layer thickness, the Helmholtz resonant effect becomes weaker and thus the output pressure bandwidth decreases.
APA, Harvard, Vancouver, ISO, and other styles
3

Sosnov, Valeriy. "Analysis of Control Problems for 2-D Model of Sound Scattering." Applied Mechanics and Materials 770 (June 2015): 531–34. http://dx.doi.org/10.4028/www.scientific.net/amm.770.531.

Full text
Abstract:
In this paper control problems for 2-D Helmholtz equation are formulated and investigated. These problems are associated with developing technology of acoustic cloaking. Helmholtz equation is considered in an unbounded domain with the impedance boundary condition. The role of control in control problems under study is played by surface impedance.
APA, Harvard, Vancouver, ISO, and other styles
4

Feng, Guo-Hua, and Wen-Sheng Chen. "Piezoelectric Micromachined Ultrasonic Transducer-Integrated Helmholtz Resonator with Microliter-Sized Volume-Tunable Cavity." Sensors 22, no. 19 (2022): 7471. http://dx.doi.org/10.3390/s22197471.

Full text
Abstract:
In this study, a piezoelectric micromachined ultrasonic transducer (PMUT) is integrated with a microliter-sized volume-tunable Helmholtz resonator. The passive Helmholtz resonator is constructed using an SU8 photolithography-defined square opening plate as the neck portion, a 3D-printed hollow structure with a threaded insert nut, and a precision set screw to form the volume-controllable cavity of the Helmholtz resonator. The fabricated piezoelectric films acted as ultrasonic actuators attached to the surface of the neck SU8 plate. Experimental results show that the sound pressure level (SPL) and operation bandwidth could be effectively tuned, and a 200% SPL increase and twofold bandwidth enhancement are achieved when setting the cavity length to 0.75 mm compared with the open-cavity case. A modified Helmholtz resonator model is proposed to explain the experimental results. The adjusting factors of the effective mass and viscous damper are created to modify the existing parameters in the conventional Helmholtz resonator model. The relationship between the adjusting factors and cavity length can be described well using a two-term power series curve. This modified Helmholtz resonator model not only provides insight into this active-type Helmholtz resonator operation but also provides a useful estimation for its optimal design and fabrication.
APA, Harvard, Vancouver, ISO, and other styles
5

Dayan, Peter, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. "The Helmholtz Machine." Neural Computation 7, no. 5 (1995): 889–904. http://dx.doi.org/10.1162/neco.1995.7.5.889.

Full text
Abstract:
Discovering the structure inherent in a set of patterns is a fundamental aim of statistical inference or learning. One fruitful approach is to build a parameterized stochastic generative model, independent draws from which are likely to produce the patterns. For all but the simplest generative models, each pattern can be generated in exponentially many ways. It is thus intractable to adjust the parameters to maximize the probability of the observed patterns. We describe a way of finessing this combinatorial explosion by maximizing an easily computed lower bound on the probability of the observations. Our method can be viewed as a form of hierarchical self-supervised learning that may relate to the function of bottom-up and top-down cortical processing pathways.
APA, Harvard, Vancouver, ISO, and other styles
6

Megasari, M. "Dual Reciprocity Boundary Element Method untuk Menyelesaikan Masalah Infiltrasi Stasioner pada Saluran Datar Periodik." Journal of Mathematics Computations and Statistics 4, no. 1 (2021): 30. http://dx.doi.org/10.35580/jmathcos.v4i1.20447.

Full text
Abstract:
Abstrak. Penelitian ini membahas tentang penyelesaian masalah infiltrasi stasioner dari saluran datar dengan Dual Reciprocity Boundary Element Method (DRBEM). Persamaan pembangun untuk masalah ini adalah persamaan Richard. Menggunakan transformasi Kirchhoff dan relasi eksponensial konduktifitas hidrolik, persamaan Richard ditransformasi ke dalam persamaan infiltrasi stasioner dalam Matric Flux Potential (MFP). Persamaan infiltrasi dalam MFP selanjutnya diubah ke dalam persamaan Helmholtz termodifikasi. Model matematika infiltrasi stasioner pada saluran datar berbentuk Masalah Syarat batas Helmholtz termodifikasi Solusi numerik diperoleh dengan menyelesaikan persamaan Helmholtz termodifikasi menggunakan Dual Reciprocity Boundary Element Method (DRBEM) dengan pengambilan jumlah titik kolokasi eksterior dan interior yang bervariasi. Lebih lanjut, solusi numerik dan solusi analitik dibandingkan..Kata Kunci: Infiltrasi, saluran datar, persamaan helmholtz termodifikasi, DRBEM.Abstract. This research discusses about the problem solving of steady infiltration problem from flat channel with Dual Reciprocity Boundary Element Method (DRBEM). The governing equation for this problem is Richard’s equation. Using Kirchhoff transformation and exponential hydraulic conductivity relation, Richard’s equation is transformed into steady infiltration equation in the form of MFP. Infiltration equation in the form of MFP is then transformed to modified Helmholtz equation. A mathematical model of steady infiltration from flat channel in the form of boundary condition problem of modified Helmholtz EQUATION. Numerical solution is obtained by solving modified Helmholtz equation by using Dual Reciprocity Boundary Element Method (DRBEM) with various number of exterior and interior collocation points. Moreover, numerical and analytic solution are then compared.Keywords: infiltration, flat channel, modified Helmholtz equation, DRBEM
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jianguo, Philip Rubini, Qin Qin, and Brian Houston. "A Model to Predict Acoustic Resonant Frequencies of Distributed Helmholtz Resonators on Gas Turbine Engines." Applied Sciences 9, no. 7 (2019): 1419. http://dx.doi.org/10.3390/app9071419.

Full text
Abstract:
Helmholtz resonators, traditionally designed as a narrow neck backed by a cavity, are widely applied to attenuate combustion instabilities in gas turbine engines. The use of multiple small holes with an equivalent open area to that of a single neck has been found to be able to significantly improve the noise damping bandwidth. This type of resonator is often referred to as “distributed Helmholtz resonator”. When multiple holes are employed, interactions between acoustic radiations from neighboring holes changes the resonance frequency of the resonator. In this work, the resonance frequencies from a series of distributed Helmholtz resonators were obtained via a series of highly resolved computational fluid dynamics simulations. A regression analysis of the resulting response surface was undertaken and validated by comparison with experimental results for a series of eighteen absorbers with geometries typically employed in gas turbine combustors. The resulting model demonstrates that the acoustic end correction length for perforations is closely related to the effective porosity of the perforated plate and will be obviously enhanced by acoustic radiation effect from the perforation area as a whole. This model is easily applicable for engineers in the design of practical distributed Helmholtz resonators.
APA, Harvard, Vancouver, ISO, and other styles
8

Matveev, Konstantin I. "Thermoacoustically controlled Helmholtz resonators." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, no. 11 (2013): 2563–68. http://dx.doi.org/10.1177/0954406213477569.

Full text
Abstract:
Helmholtz resonators and their modifications are commonly applied for suppressing unwanted sound, including acoustic oscillations in chambers of propulsion and power systems. Sound absorption characteristics of Helmholtz resonators can be enhanced and controlled with a use of thermal stratification in porous insets inside resonators. A simplified lumped-element model for thermoacoustically augmented Helmholtz resonators is developed in this article. Sample calculations illustrate effects of temperature gradients, porosity, positions of porous insets, and locations of resonators inside chambers.
APA, Harvard, Vancouver, ISO, and other styles
9

Hersh, A. S., B. E. Walker, and J. W. Celano. "Helmholtz Resonator Impedance Model, Part 1: Nonlinear Behavior." AIAA Journal 41, no. 5 (2003): 795–808. http://dx.doi.org/10.2514/2.2041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

El-Sayed, Salah M., and Doǧan Kaya. "Comparing numerical methods for Helmholtz equation model problem." Applied Mathematics and Computation 150, no. 3 (2004): 763–73. http://dx.doi.org/10.1016/s0096-3003(03)00305-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!