Academic literature on the topic 'Hemiascomycetes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hemiascomycetes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hemiascomycetes"

1

Chanfreau, Guillaume. "Conservation of RNase III Processing Pathways and Specificity in Hemiascomycetes." Eukaryotic Cell 2, no. 5 (October 2003): 901–9. http://dx.doi.org/10.1128/ec.2.5.901-909.2003.

Full text
Abstract:
ABSTRACT Rnt1p, the only known Saccharomyces cerevisiae RNase III endonuclease, plays important functions in the processing of precursors of rRNAs (pre-rRNAs) and of a large number of small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). While most eukaryotic RNases III, including the Schizosaccharomyces pombe enzyme Pac1p, cleave double-stranded RNA without sequence specificity, Rnt1p cleavage relies on the presence of terminal tetraloop structures that carry the consensus sequence AGNN. To search for the conservation of these processing signals, I have systematically analyzed predicted secondary structures of the 3′ external transcribed spacer (ETS) sequences of the pre-rRNAs and of flanking sequences of snRNAs and snoRNAs from sequences available in 13 other Hemiascomycetes species. In most of these species, except in Yarrowia lipolytica, double-stranded RNA regions capped by terminal AGNN tetraloops can be found in the 3′ ETS sequences of rRNA, in the 5′- or 3′-end flanking sequences of sn(o)RNAs, or in the intergenic spacers of polycistronic snoRNA transcription units. This analysis shows that RNase III processing signals and RNase III cleavage specificity are conserved in most Hemiascomycetes species but probably not in the evolutionarily more distant species Y. lipolytica.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramírez-Zavala, Bernardo, and Ángel Domínguez. "Evolution and phylogenetic relationships of APSES proteins from Hemiascomycetes." FEMS Yeast Research 8, no. 4 (March 19, 2008): 511–19. http://dx.doi.org/10.1111/j.1567-1364.2008.00370.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lafontaine, Ingrid, and Bernard Dujon. "Origin and fate of pseudogenes in Hemiascomycetes: a comparative analysis." BMC Genomics 11, no. 1 (2010): 260. http://dx.doi.org/10.1186/1471-2164-11-260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, C., Q. Zhu, Z. Adam, and D. Sankoff. "Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes." Bioinformatics 24, no. 13 (June 27, 2008): i96—i104. http://dx.doi.org/10.1093/bioinformatics/btn146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolfe, Kenneth H. "Comparative genomics and genome evolution in yeasts." Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1467 (February 2006): 403–12. http://dx.doi.org/10.1098/rstb.2005.1799.

Full text
Abstract:
Yeasts provide a powerful model system for comparative genomics research. The availability of multiple complete genome sequences from different fungal groups—currently 18 hemiascomycetes, 8 euascomycetes and 4 basidiomycetes—enables us to gain a broad perspective on genome evolution. The sequenced genomes span a continuum of divergence levels ranging from multiple individuals within a species to species pairs with low levels of protein sequence identity and no conservation of gene order. One of the most interesting emerging areas is the growing number of events such as gene losses, gene displacements and gene relocations that can be attributed to the action of natural selection.
APA, Harvard, Vancouver, ISO, and other styles
6

Byrne, K. P. "Visualizing syntenic relationships among the hemiascomycetes with the Yeast Gene Order Browser." Nucleic Acids Research 34, no. 90001 (January 1, 2006): D452—D455. http://dx.doi.org/10.1093/nar/gkj041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurtzman, Cletus P., Marc‐André Lachance, Huu‐Vang Nguyen, and Hansjörg Prillinger. "(1485) Proposal to conserve the name Kluyveromyces with a conserved type (Ascomycota: Hemiascomycetes, Saccharomycetaceae)." TAXON 50, no. 3 (August 2001): 907–8. http://dx.doi.org/10.2307/1223723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pesole, G., M. Lotti, L. Alberghina, and C. Saccone. "Evolutionary origin of nonuniversal CUGSer codon in some Candida species as inferred from a molecular phylogeny." Genetics 141, no. 3 (November 1, 1995): 903–7. http://dx.doi.org/10.1093/genetics/141.3.903.

Full text
Abstract:
Abstract CUG, a universal leucine codon, has been reported to be read as serine in various yeast species belonging to the genus Candida. To gain a deeper insight into the origin of this deviation from the universal genetic code, we carried out a phylogenetic analysis based on the small-subunit ribosomal RNA genes from some Candida and other related Hemiascomycetes. Furthermore, we determined the phylogenetic relationships between the tRNA(Ser)CAG, responsible for the translation of CUG, from some Candida species and the other serine and leucine isoacceptor tRNAs in C. cylindracea. We demonstrate that the group of Candida showing the genetic code deviation is monophyletic and that this deviation could have originated more than 150 million years ago. We also describe how phylogenetic analysis can be used for genetic code predictions.
APA, Harvard, Vancouver, ISO, and other styles
9

Marck, C. "The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications." Nucleic Acids Research 34, no. 6 (March 23, 2006): 1816–35. http://dx.doi.org/10.1093/nar/gkl085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banerjee, Dibyendu, Gaelle Lelandais, Sudhanshu Shukla, Gauranga Mukhopadhyay, Claude Jacq, Frederic Devaux, and Rajendra Prasad. "Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks." Eukaryotic Cell 7, no. 1 (November 9, 2007): 68–77. http://dx.doi.org/10.1128/ec.00256-07.

Full text
Abstract:
ABSTRACT Steroids are known to induce pleiotropic drug resistance states in hemiascomycetes, with tremendous potential consequences for human fungal infections. Our analysis of gene expression in Saccharomyces cerevisiae and Candida albicans cells subjected to three different concentrations of progesterone revealed that their pleiotropic drug resistance (PDR) networks were strikingly sensitive to steroids. In S. cerevisiae, 20 of the Pdr1p/Pdr3p target genes, including PDR3 itself, were rapidly induced by progesterone, which mimics the effects of PDR1 gain-of-function alleles. This unique property allowed us to decipher the respective roles of Pdr1p and Pdr3p in PDR induction and to define functional modules among their target genes. Although the expression profiles of the major PDR transporters encoding genes ScPDR5 and CaCDR1 were similar, the S. cerevisiae global PDR response to progesterone was only partly conserved in C. albicans. In particular, the role of Tac1p, the main C. albicans PDR regulator, in the progesterone response was apparently restricted to five genes. These results suggest that the C. albicans and S. cerevisiae PDR networks, although sharing a conserved core regarding the regulation of membrane properties, have different structures and properties. Additionally, our data indicate that other as yet undiscovered regulators may second Tac1p in the C. albicans drug response.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hemiascomycetes"

1

LLORENTE, BERTRAND. "Redondance genique et redondance genetique chez les levures hemiascomycetes." Paris 6, 2001. http://www.theses.fr/2001PA066149.

Full text
Abstract:
Les genes paralogues representent environ 40% du genome de saccharomyces cerevisiae. Ils codent des proteines paralogues aux proprietes biochimiques similaires voire identiques, ce qui n'est pas toujours le cas de leurs roles biologiques. A travers une premiere approche fonctionnelle, nous avons participe a l'analyse systematique de la redondance genique chez s. Cerevisiae. Nous avons etudie quatre familles de genes paralogues aux fonctions inconnues et mis en evidence que l'une d'elles est essentielle a la biosynthese de la thiamine. Seules thi20p et thi21p sont isofonctionnelles et codent des kinases d'hydroxymethylpyrimidine phosphate, alors que thi22 et pet18 ne codent pas de fonctions essentielles a la biosynthese de cette vitamine. L'analyse des regulations du transcriptome induites par la thiamine nous a fait nous interesser plus particulierement a la famille de permeases de da15p, et nous avons identifie un nouveau substrat specifique de l'un de ses membres, tna1p. Les trois autres familles etudiees ne sont pas essentielles a la vie de la cellule dans les conditions standards de laboratoire. Nous avons des evidences de redondance fonctionnelle partielle pour des membres de deux d'entre elles, impliquees respectivement dans le metabolisme de la paroi cellulaire et des esters. La quatrieme famille reste encore de fonction inconnue. A travers une seconde approche comparative, realisee dans le cadre du programme genolevures, programme collaboratif d'exploration genomique de 13 levures hemiascomycetes, nous avons mis en evidence que le degre de redondance genique de s. Cerevisiae est globalement conserve au sein des toutes ces especes, sauf celui de ses genes subtelomeriques. Cumule avec l'analyse de la conservation de la syntenie, ce resultat nous a permis de proposer un modele d'evolution des genomes des hemiascomycetes. Ce modele est base sur un equilibre dynamique entre des duplications de grands fragments chromosomiques, et des evenements de deletions.
APA, Harvard, Vancouver, ISO, and other styles
2

Muller, Héloïse. "Aspects de la microévolution et étude du type sexuel chez Candida glabrata." Paris 6, 2008. http://www.theses.fr/2008PA066078.

Full text
Abstract:
Le travail de cette thèse porte sur l’étude de la levure Candida glabrata, qui est la plus proche espèce de S. Cerevisiae actuellement séquencée. Malgré cette relation phylogénétique, les deux levures ont des modes de vie très différents. Quelles sont les différences génotypiques qui ont fait que ces deux levures se sont adaptées à des environnements différents ? Nous nous sommes intéressés à cette question à travers deux aspects liés : la dynamique du génome de C. Glabrata à travers l’étude du polymorphisme de ses chromosomes dans une population d’environ 200 isolats cliniques ; et l’étude du cycle de reproduction de C. Glabrata. L’étude de la microévolution de C. Glabrata montre que les réarrangements chromosomiques sont principalement dus à deux mécanismes : de rares translocations réciproques et la recombinaison entre séquences similaires. L’analyse de l’expression du type sexuel chez C. Glabrata a permis de mettre en évidence certaines régulations conservées avec S. Cerevisiae, mais également des dérégulations, comme l’absence de silencing au niveau du locus HMR.
APA, Harvard, Vancouver, ISO, and other styles
3

Kachouri-Lafond, Rym. "Computational identification of non-coding RNAs in hemiascomycete yeast genomes and structural evolution analysis of these RNAs." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13251.

Full text
Abstract:
The central aim of the thesis is to contribute to the understanding of the relationships between the architecture and evolution of non-coding RNAs (ncRNAs), by comparative sequence analysis. The chosen model group is the one of the hemiascomycete yeasts, the group of Saccharomyces cerevisiae. The RNA annotation of these complete sequenced yeast genomes, led to the identification of an unconventional size of a RNase P RNA, which is an universal ribozyme that processes pre-tRNAs in all organisms of the three domains of life. This huge RNase P RNA, more than 1kb, was discovered in the human–pathogen yeast, Candida glabrata, which is very unusual, since in other eukaryotic and prokaryotic species the length is averaging 300 nucleotides (nt). Despite its length, the computational identified RNA is really the functional RNA in the cell. Another huge RNA was surprisingly discovered in the same yeast, namely the one of the telomerase ribonucleoprotein (RNP) complex, which protects chromosome by adding repeated sequences at their ends. It is the largest described to date, as it was also the case for the RNase P RNA. However, the telomerase RNA is much larger, with a size that reaches more than 2,5 kb and corresponds to more than 15 times the smallest telomerase RNA ever found in a eukaryote. Most of the time, the largest RNAs is found in C. Glabrata (the other example is U1 snRNA), but other hemiascomycete species express also ncRNAs with great sizes. [. . . ]
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hemiascomycetes"

1

Beckerich, Jean-Marie, Sophie Landaud, Djamila Onésime, and Agnès Hébert. "Sulfur Metabolism in Hemiascomycetes Yeast." In Proceedings of the International Plant Sulfur Workshop, 49–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20137-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rusche, Laura N., and Meleah A. Hickman. "Evolution of Silencing at the Mating-Type Loci in Hemiascomycetes." In Sex in Fungi, 189–200. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815837.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gaillardin, Claude. "Hemiascomycetous Yeasts." In Yeast, 371–405. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527659180.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Muller, Héloïse, Christophe Hennequin, Bernard Dujon, and Cécile Fairhead. "Ascomycetes: the Candida MAT Locus: Comparing MAT in the Genomes of Hemiascomycetous Yeasts." In Sex in Fungi, 247–63. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815837.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sarbhoy, A. K. "FUNGI | Classification of the Hemiascomycetes." In Encyclopedia of Food Microbiology, 41–43. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-384730-0.00138-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarbhoy, A. K. "FUNGI | Classification of the Hemiascomycetes." In Encyclopedia of Food Microbiology, 898–901. Elsevier, 1999. http://dx.doi.org/10.1006/rwfm.1999.1875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Archiascomycete and Hemiascomycete Pathogens." In Plant Pathology, 212–21. CRC Press, 2003. http://dx.doi.org/10.1201/b12388-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography