To see the other types of publications on this topic, follow the link: Hemilabile ligands.

Journal articles on the topic 'Hemilabile ligands'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hemilabile ligands.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rowley, Christopher N., and Tom K. Woo. "Computational design of ruthenium hydride olefin-hydrogenation catalysts containing hemilabile ligands,." Canadian Journal of Chemistry 87, no. 7 (2009): 1030–38. http://dx.doi.org/10.1139/v09-077.

Full text
Abstract:
Three ruthenium hydridocarbonyl complexes containing bidentate hemilabile ligands have been evaluated as possible catalysts for the H2 hydrogenation of olefins. Our previous investigations of the mainstay hydridoruthenium catalyst, RuHCl(CO)(PR3)2 (1), indicated that the rate-limiting olefin-insertion barrier was increased by the need for an H2 molecule to act as a stabilizing two-electron donor. Using density functional theory (DFT) calculations, we have determined that a P,N phosphane-oxazoline would be suitable for stabilizing the metal center of the complex RuHCl(CO)(PiPr3)(DZ), where DZ i
APA, Harvard, Vancouver, ISO, and other styles
2

Ulm, Franck, Amalia I. Poblador-Bahamonde, Sabine Choppin та ін. "Synthesis, characterization, and catalytic application in aldehyde hydrosilylation of half-sandwich nickel complexes bearing (κ1-C)- and hemilabile (κ2-C,S)-thioether-functionalised NHC ligands". Dalton Transactions 47, № 47 (2018): 17134–45. http://dx.doi.org/10.1039/c8dt03882a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piskunov, Alexandr V., Kira I. Pashanova, Artem S. Bogomyakov, Ivan V. Smolyaninov, Andrey G. Starikov, and Georgy K. Fukin. "Cobalt complexes with hemilabile o-iminobenzoquinonate ligands: a novel example of redox-induced electron transfer." Dalton Transactions 47, no. 42 (2018): 15049–60. http://dx.doi.org/10.1039/c8dt02733a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Slade, Angela T., Cornelis Lensink, Andrew Falshaw, George R. Clark, and L. James Wright. "Ruthenium and osmium complexes of hemilabile chiral monophosphinite ligands derived from 1D-pinitol or 1D-chiro-inositol as catalysts for asymmetric hydrogenation reactions." Dalton Trans. 43, no. 45 (2014): 17163–71. http://dx.doi.org/10.1039/c4dt02558j.

Full text
Abstract:
Chiral monophosphinite ligands derived from 1D-pinitol or 1D-chiro-inositol coordinate to ruthenium as bidentate hemilabile ligands to produce ketone hydrogenation catalysts that give high conversions but low %ee values.
APA, Harvard, Vancouver, ISO, and other styles
5

Goonesinghe, Chatura, Hootan Roshandel, Carlos Diaz, et al. "Cationic indium catalysts for ring opening polymerization: tuning reactivity with hemilabile ligands." Chemical Science 11, no. 25 (2020): 6485–91. http://dx.doi.org/10.1039/d0sc01291b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pisk, Jana, Mirta Rubčić, Dino Kuzman, Marina Cindrić, Dominique Agustin, and Višnja Vrdoljak. "Molybdenum(vi) complexes of hemilabile aroylhydrazone ligands as efficient catalysts for greener cyclooctene epoxidation: an experimental and theoretical approach." New Journal of Chemistry 43, no. 14 (2019): 5531–42. http://dx.doi.org/10.1039/c9nj00229d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vosáhlo, Petr, Jiří Schulz, Karel Škoch, Ivana Císařová, and Petr Štěpnička. "Synthesis and characterisation of palladium(ii) complexes with hybrid phosphinoferrocene ligands bearing additional O-donor substituents." New Journal of Chemistry 43, no. 11 (2019): 4463–70. http://dx.doi.org/10.1039/c9nj00298g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arnold, Polly L., Thomas Cadenbach, Isobel H. Marr, et al. "Homo- and heteroleptic alkoxycarbene f-element complexes and their reactivity towards acidic N–H and C–H bonds." Dalton Trans. 43, no. 38 (2014): 14346–58. http://dx.doi.org/10.1039/c4dt01442a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bernhammer, Jan Christopher, Gilles Frison та Han Vinh Huynh. "Pincer versus pseudopincer: isomerism in palladium(ii) complexes bearing κ3C,S,C ligands". Dalton Trans. 43, № 23 (2014): 8591–94. http://dx.doi.org/10.1039/c4dt01047g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paradiso, Veronica, Vito Capaccio, David Hermann Lamparelli, and Carmine Capacchione. "Metal Complexes Bearing Sulfur-Containing Ligands as Catalysts in the Reaction of CO2 with Epoxides." Catalysts 10, no. 8 (2020): 825. http://dx.doi.org/10.3390/catal10080825.

Full text
Abstract:
Coupling of CO2 with epoxides is a green emerging alternative for the synthesis of cyclic organic carbonates (COC) and aliphatic polycarbonates (APC). The scope of this work is to provide a comprehensive overview of metal complexes having sulfur-containing ligands as homogeneous catalytic systems able to efficiently promote this transformation with a concise discussion of the most significant results. The crucial role of sulfur as the hemilabile ligand and its influence on the catalytic activity are highlighted as well.
APA, Harvard, Vancouver, ISO, and other styles
11

Nair, Ashwin G., Roy T. McBurney, D. Barney Walker, et al. "Ruthenium(ii) complexes of hemilabile pincer ligands: synthesis and catalysing the transfer hydrogenation of ketones." Dalton Transactions 45, no. 36 (2016): 14335–42. http://dx.doi.org/10.1039/c6dt02459a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pucino, Margherita, Florian Allouche, Christopher P. Gordon, Michael Wӧrle, Victor Mougel, and Christophe Copéret. "A reactive coordinatively saturated Mo(iii) complex: exploiting the hemi-lability of tris(tert-butoxy)silanolate ligands." Chemical Science 10, no. 25 (2019): 6362–67. http://dx.doi.org/10.1039/c9sc01955c.

Full text
Abstract:
Hemilabile tris(tert-butoxy)silanolate ligands allow stabilizing a mononuclear octahedral Mo(iii) complex without quenching its reactivity towards small molecules (N<sub>2</sub>, CO<sub>2</sub>, N<sub>2</sub>O).
APA, Harvard, Vancouver, ISO, and other styles
13

Lindner, Ronald, Bart van den Bosch, Martin Lutz, Joost N. H. Reek, and Jarl Ivar van der Vlugt. "Tunable Hemilabile Ligands for Adaptive Transition Metal Complexes." Organometallics 30, no. 3 (2011): 499–510. http://dx.doi.org/10.1021/om100804k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ramirez, Antonio, Xiufeng Sun, and David B. Collum. "Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands." Journal of the American Chemical Society 128, no. 31 (2006): 10326–36. http://dx.doi.org/10.1021/ja062147h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Farrell, Joshua R., Adam H. Eisenberg, Chad A. Mirkin, et al. "Templated Formation of Binuclear Macrocycles via Hemilabile Ligands." Organometallics 18, no. 23 (1999): 4856–68. http://dx.doi.org/10.1021/om990585+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Faller, John W, Heather L Stokes-Huby, and Mauricio A Albrizzio. "Rearrangements in Allylpalladium Complexes with Hemilabile Chelating Ligands." Helvetica Chimica Acta 84, no. 10 (2001): 3031–42. http://dx.doi.org/10.1002/1522-2675(20011017)84:10<3031::aid-hlca3031>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dilsky, Stefan, and Wolfdieter�A Schenk. "Diastereomeric Halfsandwich Rhenium Complexes Containing Hemilabile Phosphane Ligands." European Journal of Inorganic Chemistry 2004, no. 24 (2004): 4859–70. http://dx.doi.org/10.1002/ejic.200400552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Adams, Gemma M., and Andrew S. Weller. "POP-type ligands: Variable coordination and hemilabile behaviour." Coordination Chemistry Reviews 355 (January 2018): 150–72. http://dx.doi.org/10.1016/j.ccr.2017.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Higgins, Thomas B., and Chad A. Mirkin. "Model compounds for polymeric redox-switchable hemilabile ligands." Inorganica Chimica Acta 240, no. 1-2 (1995): 347–53. http://dx.doi.org/10.1016/0020-1693(95)04553-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fernandes, Tiago A., Hana Solařová, Ivana Císařová, Filip Uhlík, Martin Štícha, and Petr Štěpnička. "Synthesis of phosphinoferrocene amides and thioamides from carbamoyl chlorides and the structural chemistry of Group 11 metal complexes with these mixed-donor ligands." Dalton Transactions 44, no. 7 (2015): 3092–108. http://dx.doi.org/10.1039/c4dt03279a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ding, Shengda, Pokhraj Ghosh, Marcetta Y. Darensbourg, and Michael B. Hall. "Interplay of hemilability and redox activity in models of hydrogenase active sites." Proceedings of the National Academy of Sciences 114, no. 46 (2017): E9775—E9782. http://dx.doi.org/10.1073/pnas.1710475114.

Full text
Abstract:
The hydrogen evolution reaction, as catalyzed by two electrocatalysts [M(N2S2)·Fe(NO)2]+, [Fe-Fe]+ (M = Fe(NO)) and [Ni-Fe]+ (M = Ni) was investigated by computational chemistry. As nominal models of hydrogenase active sites, these bimetallics feature two kinds of actor ligands: Hemilabile, MN2S2 ligands and redox-active, nitrosyl ligands, whose interplay guides the H2 production mechanism. The requisite base and metal open site are masked in the resting state but revealed within the catalytic cycle by cleavage of the MS–Fe(NO)2 bond from the hemilabile metallodithiolate ligand. Introducing tw
APA, Harvard, Vancouver, ISO, and other styles
22

Kumar, Kamlesh, and James Darkwa. "Effect of chalcogens on CO insertion into the palladium–methyl bond of [(N^N^X)Pd(CH3)]+ (X = O, S, Se) and on CO/ethylene copolymerisation." Dalton Transactions 44, no. 47 (2015): 20714–27. http://dx.doi.org/10.1039/c5dt03929k.

Full text
Abstract:
Neutral and cationic palladium(ii) complexes of N<sub>pz</sub>^N<sub>py</sub>^X (X = O, S, and Se) tridentate ligands are used to study the CO insertion and CO/ethylene copolymerisation. This study sheds light on the use of chalcogens as hemilabile donor atoms.
APA, Harvard, Vancouver, ISO, and other styles
23

Morrow, T. J., W. E. Christman, J. Z. Williams, N. Arulsamy, A. Goroncy, and E. B. Hulley. "Ligand dynamics and protonation preferences of Rh and Ir complexes bearing an almost, but not quite, pendent base." Dalton Transactions 47, no. 8 (2018): 2670–82. http://dx.doi.org/10.1039/c7dt04259k.

Full text
Abstract:
Pendent nucleophiles can assist transition metals mediate bond rearrangements (e.g. as proton acceptors), but can also act as inhibitory hemilabile ligands. This dual nature has been studied in a series of rhodium and iridium complexes that exhibit disparate nucleophile binding ability in the ground state and in protonation reactions.
APA, Harvard, Vancouver, ISO, and other styles
24

Bader, Armin, and Ekkehard Lindner. "Coordination chemistry and catalysis with hemilabile oxygen-phosphorus ligands." Coordination Chemistry Reviews 108, no. 1 (1991): 27–110. http://dx.doi.org/10.1016/0010-8545(91)80013-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

van der Vlugt, Jarl Ivar, Evgeny A. Pidko, Dieter Vogt, Martin Lutz, Anthony L. Spek, and Auke Meetsma. "T-Shaped Cationic CuIComplexes with Hemilabile PNP-Type Ligands." Inorganic Chemistry 47, no. 11 (2008): 4442–44. http://dx.doi.org/10.1021/ic800298a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schneider, Joerg J. "ChemInform Abstract: Hemilabile Ligands in Catalysis and Coordination Chemistry." ChemInform 31, no. 29 (2010): no. http://dx.doi.org/10.1002/chin.200029231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ferri, Nicolò, Norah Algethami, Andrea Vezzoli, et al. "Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics." Angewandte Chemie International Edition 58, no. 46 (2019): 16583–89. http://dx.doi.org/10.1002/anie.201906400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ferri, Nicolò, Norah Algethami, Andrea Vezzoli, et al. "Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics." Angewandte Chemie 131, no. 46 (2019): 16736–42. http://dx.doi.org/10.1002/ange.201906400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fliedel, Christophe, Gilles Schnee, and Pierre Braunstein. "Versatile coordination modes of novel hemilabile S-NHC ligands." Dalton Transactions, no. 14 (2009): 2474. http://dx.doi.org/10.1039/b902314n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fukuda, Yoshimasa, Kazuhiro Kondo, and Toyohiko Aoyama. "Development of Novel Hemilabile Segphos P–P=O Ligands." CHEMICAL & PHARMACEUTICAL BULLETIN 55, no. 6 (2007): 955–56. http://dx.doi.org/10.1248/cpb.55.955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Burrows, Andrew D. "The Design and Applications of Multifunctional Ligands." Science Progress 85, no. 3 (2002): 199–217. http://dx.doi.org/10.3184/003685002783238799.

Full text
Abstract:
The properties of a metal coordination complex are determined as much by the ligand set – the molecules and ions coordinated to the metal centre – as by the nature of the metal itself. The design and use of new ligands is consequently a major part of chemical research. This review considers the role of multifunctional ligands in three separate and distinct areas of chemistry. In homogeneous catalysis, the role of hybrid and hemilabile ligands is considered, and the introduction of functionalities designed to overcome problems of separation, either by tethering or solubilising, is discussed. In
APA, Harvard, Vancouver, ISO, and other styles
32

Keim, Wilhelm, Heiko Maas, and Stefan Mecking. "Palladium Catalyzed Alternating Cooligomerization of Ethylene and Carbon Monoxide to Unsaturated Ketones." Zeitschrift für Naturforschung B 50, no. 3 (1995): 430–38. http://dx.doi.org/10.1515/znb-1995-0318.

Full text
Abstract:
Cationic palladium catalysts have been used to cooligomerize ethylene and carbon monoxide. At high ethylene/CO ratios (m /m = 10:1) in methylene chloride as a solvent, unsaturated alternating cooligomers of the general structure R[C(O)CH2CH2]mH ( m ≥ 1 ; R ≡CH2=CH-, CH2=CHCH2CH2- and CH3CH = CHCH2-) were obtained for the first time. Single component catalyst precursors [(allyl)Pd(P^X )]+Y- (P^X = Ph2P(CH2)nC(= O )OR, Ph2P(CH2)2P(=O)Ph2, Ph2P(CH2)nPh2P(CH2)2S (=O )Ph, n = 1 - 3 , R = Me, Et; Y- = BF4-, SbF6- ) with bidentate P,O- and P,S-ligands as well as in situ catalysts with unfunctionalize
APA, Harvard, Vancouver, ISO, and other styles
33

Gushchin, Artem L., Nikita Y. Shmelev, Svetlana F. Malysheva, et al. "Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo3S4 cluster and its effect on hydrogenation catalysis." New Journal of Chemistry 42, no. 21 (2018): 17708–17. http://dx.doi.org/10.1039/c8nj03720e.

Full text
Abstract:
Phosphine-thioether ligands were coordinated to the Mo<sub>3</sub>S<sub>4</sub> cluster to afford [Mo<sub>3</sub>S<sub>4</sub>Cl<sub>3</sub>(PS)<sub>3</sub>]<sup>+</sup> complexes. Their catalytic activity in nitrobenzene reduction reflects the different hemilabile behaviours of PS1, PS2 and PS3.
APA, Harvard, Vancouver, ISO, and other styles
34

Romanov, Alexander S., Florian Chotard, Jahan Rashid, and Manfred Bochmann. "Synthesis of copper(i) cyclic (alkyl)(amino)carbene complexes with potentially bidentate N^N, N^S and S^S ligands for efficient white photoluminescence." Dalton Transactions 48, no. 41 (2019): 15445–54. http://dx.doi.org/10.1039/c9dt02036e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Le Gall, Irène, Pascale Laurent, Eric Soulier, Jean-Yves Salaün, and Hervé des Abbayes. "Complexation on rhodium of bidentate and potentially hemilabile phosphorous ligands." Journal of Organometallic Chemistry 567, no. 1-2 (1998): 13–20. http://dx.doi.org/10.1016/s0022-328x(98)00662-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Yu, Toby J. Woods, and Thomas B. Rauchfuss. "Application of Hemilabile Ligands to “At-Metal Switching” Hydrogenation Catalysis." Organometallics 39, no. 19 (2020): 3602–12. http://dx.doi.org/10.1021/acs.organomet.0c00562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ulmann, Pirmin A, Aaron M Brown, Maxim V Ovchinnikov, Chad A Mirkin, Antonio G DiPasquale, and Arnold L Rheingold. "Spontaneous Formation of Heteroligated PtII Complexes with Chelating Hemilabile Ligands." Chemistry - A European Journal 13, no. 16 (2007): 4529–34. http://dx.doi.org/10.1002/chem.200601837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Slone, Caroline S., Dana A. Weinberger, and Chad A. Mirkin. "ChemInform Abstract: The Transition-Metal Coordination Chemistry of Hemilabile Ligands." ChemInform 30, no. 26 (2010): no. http://dx.doi.org/10.1002/chin.199926283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Köckritz, Angela, and Axel Weigt. "Aromatic and Chiral Phosphonate-Phosphanes - New Types of Hemilabile Ligands." Phosphorus, Sulfur, and Silicon and the Related Elements 111, no. 1 (1996): 176. http://dx.doi.org/10.1080/10426509608054805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Frank, Nicolas, Katharina Hanau, and Robert Langer. "Metal–Ligand Cooperation in H2Activation with Iron Complexes Bearing Hemilabile Bis(diphenylphosphino)amine Ligands." Inorganic Chemistry 53, no. 20 (2014): 11335–43. http://dx.doi.org/10.1021/ic5022164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ulmann, Pirmin A., Chad A. Mirkin, Antonio G. DiPasquale, Louise M. Liable-Sands, and Arnold L. Rheingold. "Reversible Ligand Pairing and Sorting Processes Leading to Heteroligated Palladium(II) Complexes with Hemilabile Ligands." Organometallics 28, no. 4 (2009): 1068–74. http://dx.doi.org/10.1021/om801060m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ramírez, Antonio, Emil Lobkovsky, and David B. Collum. "Hemilabile Ligands in Organolithium Chemistry: Substituent Effects on Lithium Ion Chelation." Journal of the American Chemical Society 125, no. 50 (2003): 15376–87. http://dx.doi.org/10.1021/ja030322d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rimola, Albert, Mariona Sodupe, Josep Ros, and Josefina Pons. "A Theoretical Study on PdII Complexes Containing Hemilabile Pyrazole-Derived Ligands." European Journal of Inorganic Chemistry 2006, no. 2 (2006): 447–54. http://dx.doi.org/10.1002/ejic.200500794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Michelet, Bastien, David Lebœuf, Christophe Bour, et al. "Catalytic Activity of Gold(I) Complexes with Hemilabile P,N Ligands." ChemPlusChem 82, no. 3 (2017): 442–48. http://dx.doi.org/10.1002/cplu.201600562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

BADER, A., and E. LINDNER. "ChemInform Abstract: Coordination Chemistry and Catalysis with Hemilabile Oxygen-Phosphorus Ligands." ChemInform 22, no. 23 (2010): no. http://dx.doi.org/10.1002/chin.199123282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Weber, R., W. Keim, M. Möthrath, U. Englert, and B. Ganter. "Hydroformylation of epoxides catalyzed by cobalt and hemilabile P–O ligands." Chemical Communications, no. 15 (2000): 1419–20. http://dx.doi.org/10.1039/b002703k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Richter, Birgit, and Helmut Werner. "Carbyne and Carbyne(hydrido) Osmium Complexes Containing Hemilabile Phosphines as Ligands†." Organometallics 28, no. 17 (2009): 5137–41. http://dx.doi.org/10.1021/om900507f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jung, Stefan, Carsten D. Brandt, and Helmut Werner. "A cationic allenylideneruthenium(II) complex with two bulky hemilabile phosphine ligands." New Journal of Chemistry 25, no. 9 (2001): 1101–3. http://dx.doi.org/10.1039/b104787f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jansen, Achim, та Stephan Pitter. "Synthesis of Hemilabile P,N Ligands: ω-2-Pyridyl-n-alkylphosphines". Monatshefte für Chemie / Chemical Monthly 130, № 6 (1999): 783–94. http://dx.doi.org/10.1007/pl00010260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lindner, Ekkehard, and Berthold Karle. "Notizen: Neuartige basische Liganden für die homogenkatalytische Methanolcarbonylierung, XXVII [1] / Fluktuierendes Verhalten von Tris(Ether-Phosphan)-Ruthenium(II)-Komplexen / Novel Basic Ligands for the Homogenous Catalytic Carbonylation of Methanol, XXVII. Fluxional Behaviour of Tris(ether-phosphane) Ruthenium(II) Complexes." Zeitschrift für Naturforschung B 45, no. 7 (1990): 1108–10. http://dx.doi.org/10.1515/znb-1990-0737.

Full text
Abstract:
Three equivalents of the ether-phosphane ligands 2a-c react with Cl2Ru(PPh3)3 (1) to give the complexes trans-Cl2Ru(P ̑O)(P∼O)2 (3a-c) (P∼O = η1-P-coordinated; P ̑O = η2-Ο,Ρ-coordinated). The hemilabile character of the P,O–ligands is becoming evident by the fluxional behaviour of 3 a-c. The coalescence temperatures in the AB part of their 31P{1H} NMR spectra are found at -10, 15 and -15 °C (AG* = 48, 53 and 47 kJ/mol). Because of steric effects, 3 a, in which the ether oxygen atom has the lowest basicity, and 3c, with the smallest ether substituent, show nearly the same dynamic properties.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!