Journal articles on the topic 'Hemodynamic Simulations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hemodynamic Simulations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Friedman, Morton H., Heather A. Himburg, and Jeffrey A. LaMack. "Statistical Hemodynamics: A Tool for Evaluating the Effect of Fluid Dynamic Forces on Vascular Biology In Vivo." Journal of Biomechanical Engineering 128, no. 6 (2006): 965–68. http://dx.doi.org/10.1115/1.2354212.
Full textStahl, Janneck, Anna Bernovskis, Daniel Behme, Sylvia Saalfeld, and Philipp Berg. "Impact of patient-specific inflow boundary conditions on intracranial aneurysm hemodynamics." Current Directions in Biomedical Engineering 8, no. 1 (2022): 125–28. http://dx.doi.org/10.1515/cdbme-2022-0032.
Full textGrygoryan, R. D., and T. V. Aksenova. "Simulations of hypertrophied heart’s hemodynamics." PROBLEMS IN PROGRAMMING, no. 2-3 (June 2016): 254–63. http://dx.doi.org/10.15407/pp2016.02-03.254.
Full textPopović, Zoran B., Umesh N. Khot, Gian M. Novaro, et al. "Effects of sodium nitroprusside in aortic stenosis associated with severe heart failure: pressure-volume loop analysis using a numerical model." American Journal of Physiology-Heart and Circulatory Physiology 288, no. 1 (2005): H416—H423. http://dx.doi.org/10.1152/ajpheart.00615.2004.
Full textJeken-Rico, Pablo, Aurèle Goetz, Philippe Meliga, Aurélien Larcher, Yigit Özpeynirci, and Elie Hachem. "Evaluating the Impact of Domain Boundaries on Hemodynamics in Intracranial Aneurysms within the Circle of Willis." Fluids 9, no. 1 (2023): 1. http://dx.doi.org/10.3390/fluids9010001.
Full textNiemann, Annika, Samuel Voß, Riikka Tulamo, et al. "Complex wall modeling for hemodynamic simulations of intracranial aneurysms based on histologic images." International Journal of Computer Assisted Radiology and Surgery 16, no. 4 (2021): 597–607. http://dx.doi.org/10.1007/s11548-021-02334-z.
Full textBrambila-Solórzano, Alberto, Federico Méndez-Lavielle, Jorge Luis Naude, et al. "Influence of Blood Rheology and Turbulence Models in the Numerical Simulation of Aneurysms." Bioengineering 10, no. 10 (2023): 1170. http://dx.doi.org/10.3390/bioengineering10101170.
Full textGrygoryan, R. D., A. G. Degoda, T. V. Lyudovyk, and O. I. Yurchak. "Simulations of human hemodynamic responses to blood temperature and volume changes." PROBLEMS IN PROGRAMMING, no. 1 (January 2023): 19–29. http://dx.doi.org/10.15407/pp2023.01.019.
Full textChen, Yan, Masaharu Kobayashi, Changyoung Yuhn, and Marie Oshima. "Development of a 3D Vascular Network Visualization Platform for One-Dimensional Hemodynamic Simulation." Bioengineering 11, no. 4 (2024): 313. http://dx.doi.org/10.3390/bioengineering11040313.
Full textKorte, J., P. Groschopp, and P. Berg. "Resolution-based comparative analysis of 4D-phase-contrast magnetic resonance images and hemodynamic simulations of the aortic arch." Current Directions in Biomedical Engineering 9, no. 1 (2023): 650–53. http://dx.doi.org/10.1515/cdbme-2023-1163.
Full textHoi, Yiemeng, Hui Meng, Scott H. Woodward, et al. "Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study." Journal of Neurosurgery 101, no. 4 (2004): 676–81. http://dx.doi.org/10.3171/jns.2004.101.4.0676.
Full textWu, Yihao, Hui Xing, Qingyu Zhang, and Dongke Sun. "Numerical Study on Dynamics of Blood Cell Migration and Deformation in Atherosclerotic Vessels." Mathematics 10, no. 12 (2022): 2022. http://dx.doi.org/10.3390/math10122022.
Full textHyun, S., C. Kleinstreuer, P. W. Longest, and C. Chen. "Particle-Hemodynamics Simulations and Design Options for Surgical Reconstruction of Diseased Carotid Artery Bifurcations." Journal of Biomechanical Engineering 126, no. 2 (2004): 188–95. http://dx.doi.org/10.1115/1.1688777.
Full textQuicken, Sjeng, Barend Mees, Niek Zonnebeld, Jan Tordoir, Wouter Huberts, and Tammo Delhaas. "A realistic arteriovenous dialysis graft model for hemodynamic simulations." PLOS ONE 17, no. 7 (2022): e0269825. http://dx.doi.org/10.1371/journal.pone.0269825.
Full textAl-Jumaily, Ahmed M., Mohammad Al-Rawi, Djelloul Belkacemi, et al. "Computational Modeling Approach to Profile Hemodynamical Behavior in a Healthy Aorta." Bioengineering 11, no. 9 (2024): 914. http://dx.doi.org/10.3390/bioengineering11090914.
Full textGilmanov, Anvar, Alexander Barker, Henryk Stolarski, and Fotis Sotiropoulos. "Image-Guided Fluid-Structure Interaction Simulation of Transvalvular Hemodynamics: Quantifying the Effects of Varying Aortic Valve Leaflet Thickness." Fluids 4, no. 3 (2019): 119. http://dx.doi.org/10.3390/fluids4030119.
Full textKolachalama, Vijaya B., Neil W. Bressloff, and Prasanth B. Nair. "Mining data from hemodynamic simulations via Bayesian emulation." BioMedical Engineering OnLine 6, no. 1 (2007): 47. http://dx.doi.org/10.1186/1475-925x-6-47.
Full textSpilker, Ryan L., and Charles A. Taylor. "Tuning Multidomain Hemodynamic Simulations to Match Physiological Measurements." Annals of Biomedical Engineering 38, no. 8 (2010): 2635–48. http://dx.doi.org/10.1007/s10439-010-0011-9.
Full textBerg, Philipp, Sylvia Saalfeld, Samuel Voß, Oliver Beuing, and Gábor Janiga. "A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation." Neurosurgical Focus 47, no. 1 (2019): E15. http://dx.doi.org/10.3171/2019.4.focus19181.
Full textKorte, Jana, Thomas Rauwolf, Jan-Niklas Thiel, et al. "Hemodynamic Assessment of the Pathological Left Ventricle Function under Rest and Exercise Conditions." Fluids 8, no. 2 (2023): 71. http://dx.doi.org/10.3390/fluids8020071.
Full textXiang, Jianping, Jihnhee Yu, Kenneth V. Snyder, Elad I. Levy, Adnan H. Siddiqui, and Hui Meng. "Hemodynamic–morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size." Journal of NeuroInterventional Surgery 8, no. 1 (2014): 104–10. http://dx.doi.org/10.1136/neurintsurg-2014-011477.
Full textJANELA, J., A. SEQUEIRA, G. PONTRELLI, S. SUCCI, and S. UBERTINI. "UNSTRUCTURED LATTICE BOLTZMANN METHOD FOR HEMODYNAMIC FLOWS WITH SHEAR-DEPENDENT VISCOSITY." International Journal of Modern Physics C 21, no. 06 (2010): 795–811. http://dx.doi.org/10.1142/s0129183110015488.
Full textTang, Elaine, Zhenglun (Alan) Wei, Mark A. Fogel, Alessandro Veneziani, and Ajit P. Yoganathan. "Fluid-Structure Interaction Simulation of an Intra-Atrial Fontan Connection." Biology 9, no. 12 (2020): 412. http://dx.doi.org/10.3390/biology9120412.
Full textVeeturi, Sricharan S., Tatsat R. Patel, Ammad A. Baig, et al. "Hemodynamic Analysis Shows High Wall Shear Stress Is Associated with Intraoperatively Observed Thin Wall Regions of Intracranial Aneurysms." Journal of Cardiovascular Development and Disease 9, no. 12 (2022): 424. http://dx.doi.org/10.3390/jcdd9120424.
Full textWu, Wei, Anastasios Nikolaos Panagopoulos, Charu Hasini Vasa, et al. "Patient-specific computational simulation of coronary artery bypass grafting." PLOS ONE 18, no. 3 (2023): e0281423. http://dx.doi.org/10.1371/journal.pone.0281423.
Full textPadhee, Swati, Mark Johnson, Hang Yi, Tanvi Banerjee, and Zifeng Yang. "Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography." Bioengineering 9, no. 11 (2022): 622. http://dx.doi.org/10.3390/bioengineering9110622.
Full textNixon, Alexander M., Murat Gunel, and Bauer E. Sumpio. "The critical role of hemodynamics in the development of cerebral vascular disease." Journal of Neurosurgery 112, no. 6 (2010): 1240–53. http://dx.doi.org/10.3171/2009.10.jns09759.
Full textHoque, K. E., S. Sawall, M. A. Hoque, and M. S. Hossain. "Hemodynamic Simulations to Identify Irregularities in Coronary Artery Models." Journal of Advances in Mathematics and Computer Science 28, no. 5 (2018): 1–19. http://dx.doi.org/10.9734/jamcs/2018/43598.
Full textZhang, Qin-Yi, Xiao-Hu Zhou, Xiao-Liang Xie, et al. "A Learning-based Acceleration Framework for Transient Hemodynamic Simulations." Procedia Computer Science 250 (2024): 136–42. https://doi.org/10.1016/j.procs.2024.11.019.
Full textJeken-Rico, Pablo, Yves Chau, Aurèle Goetz, Vincent Lannelongue, Jacques Sédat, and Elie Hachem. "Virtual flow diverter deployment and embedding for hemodynamic simulations." Computers in Biology and Medicine 180 (September 2024): 109023. http://dx.doi.org/10.1016/j.compbiomed.2024.109023.
Full textFonte, T. A., I. E. Vignon-Clementel, C. A. Figueroa, J. A. Feinstein, and C. A. Taylor. "Three-dimensional simulations of hemodynamic factors in pulmonary hypertension." Journal of Biomechanics 39 (January 2006): S290—S291. http://dx.doi.org/10.1016/s0021-9290(06)84125-4.
Full textMansilla Alvarez, L. A., P. J. Blanco, C. A. Bulant, and R. A. Feijóo. "Towards fast hemodynamic simulations in large-scale circulatory networks." Computer Methods in Applied Mechanics and Engineering 344 (February 2019): 734–65. http://dx.doi.org/10.1016/j.cma.2018.10.032.
Full textLobachik, V. I., S. V. Abrosimov, V. V. Zhidkov, and D. K. Endeka. "Hemodynamic effects of microgravity and their ground-based simulations." Acta Astronautica 23 (1991): 35–40. http://dx.doi.org/10.1016/0094-5765(91)90097-o.
Full textTorii, Ryo, Marie Oshima, Toshio Kobayashi, Kiyoshi Takagi, and Tayfun E. Tezduyar. "Influence of wall elasticity in patient-specific hemodynamic simulations." Computers & Fluids 36, no. 1 (2007): 160–68. http://dx.doi.org/10.1016/j.compfluid.2005.07.014.
Full textBENFOULA, A., L. HAMZA CHERIF, and K. N. HAKKOUM. "EVALUATION OF LEFT VENTRICULAR FILLING PRESSURE USING NUMERICAL MODELING." Journal of Mechanics in Medicine and Biology 20, no. 07 (2020): 2050043. http://dx.doi.org/10.1142/s0219519420500438.
Full textK., E. Hoque, and H. Ali M. "The Impact of Hemodynamic Parameters in 3d Idealized Coronary Artery Normal and Disease Models." Advancement in Mechanical Engineering and Technology 5, no. 1 (2022): 1–15. https://doi.org/10.5281/zenodo.6623346.
Full textWan Ab Naim, Wan Naimah, Poo Balan Ganesan, Zhonghua Sun, Kok Han Chee, Shahrul Amry Hashim, and Einly Lim. "A Perspective Review on Numerical Simulations of Hemodynamics in Aortic Dissection." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/652520.
Full textYANG, Jin You, and Yang Hong. "Numerical Simulations of the Non-Newtonian Blood Blow in Human Abdominal Artery Based on Reverse Engineering." Applied Mechanics and Materials 140 (November 2011): 195–99. http://dx.doi.org/10.4028/www.scientific.net/amm.140.195.
Full textSun, Y., M. Beshara, R. J. Lucariello, and S. A. Chiaramida. "A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex." American Journal of Physiology-Heart and Circulatory Physiology 272, no. 3 (1997): H1499—H1515. http://dx.doi.org/10.1152/ajpheart.1997.272.3.h1499.
Full textSharzehee, Mohammadali, Yuan Chang, Jiang-ping Song, and Hai-Chao Han. "Hemodynamic effects of myocardial bridging in patients with hypertrophic cardiomyopathy." American Journal of Physiology-Heart and Circulatory Physiology 317, no. 6 (2019): H1282—H1291. http://dx.doi.org/10.1152/ajpheart.00466.2019.
Full textKorte, Jana, Laurel Marsh, Franziska Gaidzik, Mariya Pravdivtseva, Naomi Larsen, and Philipp Berg. "Correlation of Black Blood MRI with Image- Based Blood Flow Simulations in Intracranial Aneurysms." Current Directions in Biomedical Engineering 7, no. 2 (2021): 895–98. http://dx.doi.org/10.1515/cdbme-2021-2228.
Full textBarahona, José, Alvaro Valencia, and María Torres. "Study of the Hemodynamics Effects of an Isolated Systolic Hypertension (ISH) Condition on Cerebral Aneurysms Models, Using FSI Simulations." Applied Sciences 11, no. 6 (2021): 2595. http://dx.doi.org/10.3390/app11062595.
Full textArzani, Amirhossein, Ga-Young Suh, Ronald L. Dalman, and Shawn C. Shadden. "A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms." American Journal of Physiology-Heart and Circulatory Physiology 307, no. 12 (2014): H1786—H1795. http://dx.doi.org/10.1152/ajpheart.00461.2014.
Full textTalaminos, Alejandro, Laura M. Roa, Antonio Álvarez, and Javier Reina. "Computational Hemodynamic Modeling of the Cardiovascular System." International Journal of System Dynamics Applications 3, no. 2 (2014): 81–98. http://dx.doi.org/10.4018/ijsda.2014040106.
Full textUchiyama, Yuya, Soichiro Fujimura, Hiroyuki Takao, et al. "Role of patient-specific blood properties in computational fluid dynamics simulation of flow diverter deployed cerebral aneurysms." Technology and Health Care, January 13, 2022, 1–12. http://dx.doi.org/10.3233/thc-213216.
Full textAn, Senyou, Huidan Yu, MD Mahfuzul Islam, et al. "Effects of donor-specific microvascular anatomy on hemodynamic perfusion in human choriocapillaris." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-48631-2.
Full textShi, Liuliu, Xinru Xiang, Jinlong Liu, and Wei Zhu. "Numerical study of the effect of stenosis on the hemodynamics of a popliteal artery." AIP Advances 15, no. 2 (2025). https://doi.org/10.1063/5.0245958.
Full textWu, Mingwei, Li Liu, and Jiang Xiong. "In Vitro Studies on Hemodynamics of Type B Aortic Dissection: Accuracy and Reliability." Journal of Endovascular Therapy, June 21, 2023. http://dx.doi.org/10.1177/15266028231182229.
Full textChang Ruan, Qi Yu, Jingyuan Zhou, Xinying Ou, Yi Liu, and Yu Chen. "Fluid–structure interaction simulation for studying hemodynamics and rupture risk of patient-specific intracranial aneurysms." Acta of Bioengineering and Biomechanics 25, no. 3 (2023). http://dx.doi.org/10.37190/abb-02247-2023-03.
Full textHu, Mengqiang, Bing Chen, and Yuanming Luo. "Computational fluid dynamics modelling of hemodynamics in aortic aneurysm and dissection: a review." Frontiers in Bioengineering and Biotechnology 13 (March 21, 2025). https://doi.org/10.3389/fbioe.2025.1556091.
Full text