Journal articles on the topic 'Hepatocellular Carcinoma HSC'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hepatocellular Carcinoma HSC.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Pei-Wen, Tung-Yi Lin, Pei-Ming Yang, Chau-Ting Yeh, and Tai-Long Pan. "Hepatic Stellate Cell Modulates the Immune Microenvironment in the Progression of Hepatocellular Carcinoma." International Journal of Molecular Sciences 23, no. 18 (2022): 10777. http://dx.doi.org/10.3390/ijms231810777.
Full textMailloux, Adam, and Pearlie Epling-Burnette. "Collagen matrix deposition by hepatic stellate cells protects hepatocellular carcinoma from NK-mediated cytotoxicity (P2013)." Journal of Immunology 190, no. 1_Supplement (2013): 53.7. http://dx.doi.org/10.4049/jimmunol.190.supp.53.7.
Full textJia, Shu-Qin, Jian-Jun Ren, Pei-De Dong, and Xing-Kai Meng. "Probing the Hepatic Progenitor Cell in Human Hepatocellular Carcinoma." Gastroenterology Research and Practice 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/145253.
Full textXiong, Hao, and Jinsheng Guo. "Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation." Pharmaceuticals 18, no. 4 (2025): 507. https://doi.org/10.3390/ph18040507.
Full textWu, Mengna, Huajie Miao, Rong Fu, Jie Zhang, and Wenjie Zheng. "Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma." Current Molecular Pharmacology 13, no. 4 (2020): 261–72. http://dx.doi.org/10.2174/1874467213666200224102820.
Full textQuiroz Reyes, Adriana G., Sonia A. Lozano Sepulveda, Natalia Martinez-Acuña, et al. "Cancer Stem Cell and Hepatic Stellate Cells in Hepatocellular Carcinoma." Technology in Cancer Research & Treatment 22 (January 2023): 153303382311636. http://dx.doi.org/10.1177/15330338231163677.
Full textLiu, Man, Jingying Zhou, Xiaoyu Liu, et al. "Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma." Gut 69, no. 2 (2019): 365–79. http://dx.doi.org/10.1136/gutjnl-2018-317257.
Full textSubramanian, Pallavi, Jochen Hampe, Frank Tacke, and Triantafyllos Chavakis. "Fibrogenic Pathways in Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)." International Journal of Molecular Sciences 23, no. 13 (2022): 6996. http://dx.doi.org/10.3390/ijms23136996.
Full textWang, Wen-Hung, Kuo-Yu Hsuan, Ling-Ya Chu, et al. "Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells." Evidence-Based Complementary and Alternative Medicine 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/5364010.
Full textMAN, LIU, Jingying Zhou, John Wong, Anthony W. H. Chan, Zhiwei Chen, and Alfred S. L. Cheng. "Delineating the epigenetic regulation of myeloid derived suppressor cell generation in hepatocellular carcinoma associated with cirrhosis." Journal of Immunology 198, no. 1_Supplement (2017): 205.14. http://dx.doi.org/10.4049/jimmunol.198.supp.205.14.
Full textSantamato, Angela, Emilia Fransvea, Francesco Dituri, et al. "Hepatic stellate cells stimulate HCC cell migration via laminin-5 production." Clinical Science 121, no. 4 (2011): 159–68. http://dx.doi.org/10.1042/cs20110002.
Full textDhar, Debanjan, Jacopo Baglieri, Tatiana Kisseleva, and David A. Brenner. "Mechanisms of liver fibrosis and its role in liver cancer." Experimental Biology and Medicine 245, no. 2 (2020): 96–108. http://dx.doi.org/10.1177/1535370219898141.
Full textJeng, Kuo-Shyang, Ssu-Jung Lu, Chih-Hsuan Wang, and Chiung-Fang Chang. "Liver Fibrosis and Inflammation under the Control of ERK2." International Journal of Molecular Sciences 21, no. 11 (2020): 3796. http://dx.doi.org/10.3390/ijms21113796.
Full textIwahashi, Shuichi, Mitsuo Shimada, Yuji Morine, et al. "The effect of hepatic stellate cells on hepatocellular carcinoma progression." Journal of Clinical Oncology 37, no. 4_suppl (2019): 265. http://dx.doi.org/10.1200/jco.2019.37.4_suppl.265.
Full textCho, Yuri, Min Ji Park, Koeun Kim, et al. "Tumor-Stroma Crosstalk Enhances REG3A Expressions that Drive the Progression of Hepatocellular Carcinoma." International Journal of Molecular Sciences 21, no. 2 (2020): 472. http://dx.doi.org/10.3390/ijms21020472.
Full textFujii, Hideki, and Norifumi Kawada. "The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease." International Journal of Molecular Sciences 21, no. 11 (2020): 3863. http://dx.doi.org/10.3390/ijms21113863.
Full textNiu, Gengming, Xiaotian Zhang, Runqi Hong та ін. "GJA1 promotes hepatocellular carcinoma progression by mediating TGF-β-induced activation and the epithelial–mesenchymal transition of hepatic stellate cells". Open Medicine 16, № 1 (2021): 1459–71. http://dx.doi.org/10.1515/med-2021-0344.
Full textSeo, Hye-Young, So-Hee Lee, Eugene Han, et al. "Evogliptin Directly Inhibits Inflammatory and Fibrotic Signaling in Isolated Liver Cells." International Journal of Molecular Sciences 23, no. 19 (2022): 11636. http://dx.doi.org/10.3390/ijms231911636.
Full textSuen, Alfred Long-Hin, Kristy Kwan-Shuen Chan, and Regina Cheuk-Lam Lo. "Abstract 3982: Anti-Stanniocalcin 1 antibody as a potential therapeutic strategy for liver fibrosis and hepatocellular carcinoma." Cancer Research 83, no. 7_Supplement (2023): 3982. http://dx.doi.org/10.1158/1538-7445.am2023-3982.
Full textLiepelt, Anke, and Frank Tacke. "Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases." American Journal of Physiology-Gastrointestinal and Liver Physiology 311, no. 2 (2016): G203—G209. http://dx.doi.org/10.1152/ajpgi.00193.2016.
Full textWang, Jun, Kefen Zhang, Xiuming Tang, Yinzhu Chen, and Zhen Ye. "Restricted cubic spline analysis: Age-dependent relationship between MAGEA12 and hepatocellular carcinoma prognosis." Journal of Cancer Research and Therapeutics 21, no. 2 (2025): 457–64. https://doi.org/10.4103/jcrt.jcrt_1690_24.
Full textWeiskirchen, Ralf, and Frank Tacke. "Relevance of Autophagy in Parenchymal and Non-Parenchymal Liver Cells for Health and Disease." Cells 8, no. 1 (2019): 16. http://dx.doi.org/10.3390/cells8010016.
Full textAn, Lingxuan, Ulrich Wirth, Dominik Koch, et al. "Metabolic Role of Autophagy in the Pathogenesis and Development of NAFLD." Metabolites 13, no. 1 (2023): 101. http://dx.doi.org/10.3390/metabo13010101.
Full textSakasai-Sakai, Akiko, Kenji Takeda, and Masayoshi Takeuchi. "Involvement of Intracellular TAGE and the TAGE–RAGE–ROS Axis in the Onset and Progression of NAFLD/NASH." Antioxidants 12, no. 3 (2023): 748. http://dx.doi.org/10.3390/antiox12030748.
Full textOzutsumi, Takahiro, Tadashi Namisaki, Naotaka Shimozato, et al. "Combined Treatment with Sodium-Glucose Cotransporter-2 Inhibitor (Canagliflozin) and Dipeptidyl Peptidase-4 Inhibitor (Teneligliptin) Alleviates NASH Progression in A Non-Diabetic Rat Model of Steatohepatitis." International Journal of Molecular Sciences 21, no. 6 (2020): 2164. http://dx.doi.org/10.3390/ijms21062164.
Full textTeng, Kun-Yu, Juan M. Barajas, Peng Hu, Samson T. Jacob, and Kalpana Ghoshal. "Role of B Cell Lymphoma 2 in the Regulation of Liver Fibrosis in miR-122 Knockout Mice." Biology 9, no. 7 (2020): 157. http://dx.doi.org/10.3390/biology9070157.
Full textHsieh, Ching-Chuan, Chien-Hui Hung, Meihua Chiang, Yu-Chin Tsai, and Jie-Teng He. "Hepatic Stellate Cells Enhance Liver Cancer Progression by Inducing Myeloid-Derived Suppressor Cells through Interleukin-6 Signaling." International Journal of Molecular Sciences 20, no. 20 (2019): 5079. http://dx.doi.org/10.3390/ijms20205079.
Full textYing, Hanglu, Long Li, Yufen Zhao, and Feng Ni. "Ivermectin Attenuates CCl4-Induced Liver Fibrosis in Mice by Suppressing Hepatic Stellate Cell Activation." International Journal of Molecular Sciences 23, no. 24 (2022): 16043. http://dx.doi.org/10.3390/ijms232416043.
Full textLi, Yanchun, Wei Guo, Mengjun Mo, et al. "Multi-omics study of the genomic features and clinical characteristics of hepatic sarcomatoid carcinoma located at different sites." Journal of Clinical Oncology 41, no. 16_suppl (2023): e15153-e15153. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e15153.
Full textBuakaew, Watunyoo, Sucheewin Krobthong, Yodying Yingchutrakul та ін. "Investigating the Antifibrotic Effects of β-Citronellol on a TGF-β1-Stimulated LX-2 Hepatic Stellate Cell Model". Biomolecules 14, № 7 (2024): 800. http://dx.doi.org/10.3390/biom14070800.
Full textNakhaei-Rad, Saeideh, Silke Pudewell, Amin Mirzaiebadizi, et al. "From Quiescence to Activation: The Reciprocal Regulation of Ras and Rho Signaling in Hepatic Stellate Cells." Cells 14, no. 9 (2025): 674. https://doi.org/10.3390/cells14090674.
Full textKoyama, Yukinori, Jun Xu, Xiao Liu, and David A. Brenner. "New Developments on the Treatment of Liver Fibrosis." Digestive Diseases 34, no. 5 (2016): 589–96. http://dx.doi.org/10.1159/000445269.
Full textStergiou, Ioanna E., Stavros P. Papadakos, Anna Karyda, Ourania E. Tsitsilonis, Meletios-Athanasios Dimopoulos, and Stamatios Theocharis. "EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets." Cancers 15, no. 15 (2023): 3963. http://dx.doi.org/10.3390/cancers15153963.
Full textDewidar, Meyer, Dooley та Meindl-Beinker. "TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019". Cells 8, № 11 (2019): 1419. http://dx.doi.org/10.3390/cells8111419.
Full textLai, Chi-Yu, Kun-Yun Yeh, Chiu-Ya Lin та ін. "MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling". Cancers 13, № 5 (2021): 940. http://dx.doi.org/10.3390/cancers13050940.
Full textWang, Yake, Xiaolong Li, Xiaowen Guan, et al. "The Upregulation of Leucine-Rich Repeat Containing 1 Expression Activates Hepatic Stellate Cells and Promotes Liver Fibrosis by Stabilizing Phosphorylated Smad2/3." International Journal of Molecular Sciences 25, no. 5 (2024): 2735. http://dx.doi.org/10.3390/ijms25052735.
Full textOrucov, М. Т., E. T. Şamdancı та Ə. B. Həsənov. "ФИБРОЛАМЕЛЛЯРНАЯ ГЕПАТОЦЕЛЛЮЛЯРНАЯ КАРЦИНОМА". Azerbaijan Medical Journal, № 3 (30 вересня 2023): 172–78. http://dx.doi.org/10.34921/amj.2023.3.028.
Full textYoon, Yongdae, Seong Chan Gong, Moon Young Kim, et al. "Generation of Fibrotic Liver Organoids Using Hepatocytes, Primary Liver Sinusoidal Endothelial Cells, Hepatic Stellate Cells, and Macrophages." Cells 12, no. 21 (2023): 2514. http://dx.doi.org/10.3390/cells12212514.
Full textDing, Ning, Nasun Hah, Ruth T. Yu, et al. "BRD4 is a novel therapeutic target for liver fibrosis." Proceedings of the National Academy of Sciences 112, no. 51 (2015): 15713–18. http://dx.doi.org/10.1073/pnas.1522163112.
Full textAkter, Sharmin. "Non-alcoholic Fatty Liver Disease and Steatohepatitis: Risk Factors and Pathophysiology." Middle East Journal of Digestive Diseases 14, no. 2 (2022): 167–81. http://dx.doi.org/10.34172/mejdd.2022.270.
Full textLiao, Yi-Jen, Yuan-Hsi Wang, Chao-Lien Liu, Cheng-Chieh Fang, Ming-Hua Hsu та Fat-Moon Suk. "4-Methoxy Sulfonyl Paeonol Inhibits Hepatic Stellate Cell Activation and Liver Fibrosis by Blocking the TGF-β1/Smad, PDGF-BB/MAPK and Akt Signaling Pathways". Applied Sciences 10, № 17 (2020): 5941. http://dx.doi.org/10.3390/app10175941.
Full textSpirk, Marlen, Sebastian Zimny, Maximilian Neumann, Nichole McMullen, Christopher J. Sinal, and Christa Buechler. "Chemerin-156 is the Active Isoform in Human Hepatic Stellate Cells." International Journal of Molecular Sciences 21, no. 20 (2020): 7555. http://dx.doi.org/10.3390/ijms21207555.
Full textClaveria-Cabello, Alex, Leticia Colyn, Maria Arechederra, et al. "Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target?" Cells 9, no. 10 (2020): 2321. http://dx.doi.org/10.3390/cells9102321.
Full textLee, Jung Il, Jocelyn H. Wright, Melissa M. Johnson, et al. "Role of Smad3 in platelet-derived growth factor-C-induced liver fibrosis." American Journal of Physiology-Cell Physiology 310, no. 6 (2016): C436—C445. http://dx.doi.org/10.1152/ajpcell.00423.2014.
Full textKhomich, Olga, Alexander V. Ivanov, and Birke Bartosch. "Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis." Cells 9, no. 1 (2019): 24. http://dx.doi.org/10.3390/cells9010024.
Full textGay, Martha, Hong Cao, and Jill P. Smith. "Abstract 6348: Cholecystokinin receptor blockade modulates in vitro fibrosis gene expression." Cancer Research 85, no. 8_Supplement_1 (2025): 6348. https://doi.org/10.1158/1538-7445.am2025-6348.
Full textShreenivas, Aditya Varnam, Guru Subramanian Guru Murthy, Ben George, et al. "Impact of tumor histology and socioeconomic factors on survival of patients suffering from malignant vascular tumors of liver and hepatocellular carcinomas: A SEER database analysis." Journal of Clinical Oncology 38, no. 15_suppl (2020): e16612-e16612. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16612.
Full textLopez, Alexis Jared Paz, Brenda Aurora Llanos Salas, Michel Vladimir Alamo Hernandez, et al. "Fibrolamellar Hepatocellular Carcinoma in Young Adult: A Case Report and Literature Review." SAR Journal of Surgery 4, no. 03 (2023): 36–40. http://dx.doi.org/10.36346/sarjs.2023.v04i03.006.
Full textRhee Chai, Ming, Padmaan Sankaran, and Lee Ming Yap. "Extrahepatic metastasis of hepatocellular carcinoma: A Malaysian case series." International Journal of Hepatobiliary and Pancreatic Diseases 12, no. 2 (2022): 9–12. http://dx.doi.org/10.5348/100099z04mc2022cs.
Full textPei, Qiying, Qian Yi, and Liling Tang. "Liver Fibrosis Resolution: From Molecular Mechanisms to Therapeutic Opportunities." International Journal of Molecular Sciences 24, no. 11 (2023): 9671. http://dx.doi.org/10.3390/ijms24119671.
Full text