To see the other types of publications on this topic, follow the link: Hermite's Polynomial.

Dissertations / Theses on the topic 'Hermite's Polynomial'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 31 dissertations / theses for your research on the topic 'Hermite's Polynomial.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Khan, Mumtaz Ahmad, Abdul Hakim Khan, and Naeem Ahmad. "A study of modified hermite polynomials." Pontificia Universidad Católica del Perú, 2012. http://repositorio.pucp.edu.pe/index/handle/123456789/96880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Perrin, D. A. "The application of Hermite polynomials to turbulent diffusion." Thesis, University of Liverpool, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Khan Mumtaz, Khan Abdul Hakim, and Naeem Ahmad. "A study of modified Hermite polynomials of two variables." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96096.

Full text
Abstract:
The present paper is a study of modied Hermite polynomials of two variables Hn(x; y; a) which for a = e reduces to Hermite polynomials of two variables Hn(x; y) due to M.A. Khan and G.S. Abukhammash.<br>El presente artculo se estudian polinomios modicados de Hermite de dos variables Hn(x; y; a) que para a = e se reducen a los polinomios de Hermite de dos variables Hn(x; y) introducidos por M.A. Khan y G.S.Abukhammash.
APA, Harvard, Vancouver, ISO, and other styles
4

Piotrowski, Andrzej. "Classes of Linear Operators and the Distribution of Zeros of Entire Functions." Thesis, University of Hawaii at Manoa, 2007. http://hdl.handle.net/10125/25932.

Full text
Abstract:
Motivated by the work of Pólya, Schur, and Turán, a complete characterization of multiplier sequences for the Hermite polynomial basis is given. Laguerre's theorem and a remarkable curve theorem due to Pólya are generalized. Sufficient conditions for the location of zeros in certain strips in the complex plane are determined. Results pertaining to multiplier sequences and complex zero decreasing sequences for other polynomial sets are established.<br>viii, 178 leaves, bound ; 29 cm.<br>Thesis (Ph. D.)--University of Hawaii at Manoa, 2007.
APA, Harvard, Vancouver, ISO, and other styles
5

Javed, Mohsin. "Algorithms for trigonometric polynomial and rational approximation." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:23a36d72-0299-4c63-98e8-d0aa088c062e.

Full text
Abstract:
This thesis presents new numerical algorithms for approximating functions by trigonometric polynomials and trigonometric rational functions. We begin by reviewing trigonometric polynomial interpolation and the barycentric formula for trigonometric polynomial interpolation in Chapter 1. Another feature of this chapter is the use of the complex plane, contour integrals and phase portraits for visualising various properties and relationships between periodic functions and their Laurent and trigonometric series. We also derive a periodic analogue of the Hermite integral formula which enables us to analyze interpolation error using contour integrals. We have not been able to find such a formula in the literature. Chapter 2 discusses trigonometric rational interpolation and trigonometric linearized rational least-squares approximations. To our knowledge, this is the first attempt to numerically solve these problems. The contribution of this chapter is presented in the form of a robust algorithm for computing trigonometric rational interpolants of prescribed numerator and denominator degrees at an arbitrary grid of interpolation points. The algorithm can also be used to compute trigonometric linearized rational least-squares and trigonometric polynomial least-squares approximations. Chapter 3 deals with the problem of trigonometric minimax approximation of functions, first in a space of trigonometric polynomials and then in a set of trigonometric rational functions. The contribution of this chapter is presented in the form of an algorithm, which to our knowledge, is the first description of a Remez-like algorithm to numerically compute trigonometric minimax polynomial and rational approximations. Our algorithm also uses trigonometric barycentric interpolation and Chebyshev-eigenvalue based root finding. Chapter 4 discusses the Fourier-Pad&eacute; (called trigonometric Pad&eacute;) approximation of a function. We review two existing approaches to the problem, both of which are based on rational approximations of a Laurent series. We present a numerical algorithm with examples and compute various type (m, n) trigonometric Pad&eacute; approximants.
APA, Harvard, Vancouver, ISO, and other styles
6

Marumo, Kohei. "Expansion methods applied to distributions and risk measurement in financial markets." Thesis, Queensland University of Technology, 2007. https://eprints.qut.edu.au/16506/1/Kohei_Marumo_Thesis.pdf.

Full text
Abstract:
Obtaining the distribution of the profit and loss (PL) of a portfolio is a key problem in market risk measurement. However, existing methods, such as those based on the Normal distribution, and historical simulation methods, which use empirical distribution of risk factors, face difficulties in dealing with at least one of the following three problems: describing the distributional properties of risk factors appropriately (description problem); deriving distributions of risk factors with time horizon longer than one day (time aggregation problem); and deriving the distribution of the PL given the distributional properties of the risk factors (risk aggregation problem). Here, we show that expansion methods can provide reasonable solutions to all three problems. Expansion methods approximate a probability density function by a sum of orthogonal polynomials multiplied by an associated weight function. One of the most important advantages of expansion methods is that they only require moments of the target distribution up to some order to obtain an approximation. Therefore they have the potential to be applied in a wide range of situations, including in attempts to solve the three problems listed above. On the other hand, it is also known that expansions lack robustness: they often exhibit unignorable negative density and their approximation quality can be extremely poor. This limits applications of expansion methods in existing studies. In this thesis, we firstly develop techniques to provide robustness, with which expansion methods result in a practical approximation quality in a wider range of examples than investigated to date. Specifically, we investigate three techniques: standardisation, use of Laguerre expansion and optimisation. Standardisation applies expansion methods to a variable which is transformed so that its first and second moments are the same as those of the weight function. Use of Laguerre expansions applies those expansions to a risk factor so that heavy tails can be captured better. Optimisation considers expansions with coefficients of polynomials optimised so that the difference between the approximation and the target distribution is minimised with respect to mean integrated squared error. We show, by numerical examples using data sets of stock index returns and log differences of implied volatility, and GARCH models, that expansions with our techniques are more robust than conventional expansion methods. As such, marginal distributions of risk factors can be approximated by expansion methods. This solves a part of the description problem: the information on the marginal distributions of risk factors can be summarised by their moments. Then we show that the dependence structure among risk factors can be summarised in terms of their cross-moments. This solves the other part of the description problem. We also use the fact that moments of risk factors can be aggregated using their moments and cross-moments, to show that expansion methods can be applied to both the time and risk aggregation problems. Furthermore, we introduce expansion methods for multivariate distributions, which can also be used to approximate conditional expectations and copula densities by rational functions.
APA, Harvard, Vancouver, ISO, and other styles
7

Marumo, Kohei. "Expansion methods applied to distributions and risk measurement in financial markets." Queensland University of Technology, 2007. http://eprints.qut.edu.au/16506/.

Full text
Abstract:
Obtaining the distribution of the profit and loss (PL) of a portfolio is a key problem in market risk measurement. However, existing methods, such as those based on the Normal distribution, and historical simulation methods, which use empirical distribution of risk factors, face difficulties in dealing with at least one of the following three problems: describing the distributional properties of risk factors appropriately (description problem); deriving distributions of risk factors with time horizon longer than one day (time aggregation problem); and deriving the distribution of the PL given the distributional properties of the risk factors (risk aggregation problem). Here, we show that expansion methods can provide reasonable solutions to all three problems. Expansion methods approximate a probability density function by a sum of orthogonal polynomials multiplied by an associated weight function. One of the most important advantages of expansion methods is that they only require moments of the target distribution up to some order to obtain an approximation. Therefore they have the potential to be applied in a wide range of situations, including in attempts to solve the three problems listed above. On the other hand, it is also known that expansions lack robustness: they often exhibit unignorable negative density and their approximation quality can be extremely poor. This limits applications of expansion methods in existing studies. In this thesis, we firstly develop techniques to provide robustness, with which expansion methods result in a practical approximation quality in a wider range of examples than investigated to date. Specifically, we investigate three techniques: standardisation, use of Laguerre expansion and optimisation. Standardisation applies expansion methods to a variable which is transformed so that its first and second moments are the same as those of the weight function. Use of Laguerre expansions applies those expansions to a risk factor so that heavy tails can be captured better. Optimisation considers expansions with coefficients of polynomials optimised so that the difference between the approximation and the target distribution is minimised with respect to mean integrated squared error. We show, by numerical examples using data sets of stock index returns and log differences of implied volatility, and GARCH models, that expansions with our techniques are more robust than conventional expansion methods. As such, marginal distributions of risk factors can be approximated by expansion methods. This solves a part of the description problem: the information on the marginal distributions of risk factors can be summarised by their moments. Then we show that the dependence structure among risk factors can be summarised in terms of their cross-moments. This solves the other part of the description problem. We also use the fact that moments of risk factors can be aggregated using their moments and cross-moments, to show that expansion methods can be applied to both the time and risk aggregation problems. Furthermore, we introduce expansion methods for multivariate distributions, which can also be used to approximate conditional expectations and copula densities by rational functions.
APA, Harvard, Vancouver, ISO, and other styles
8

Ahy, Nathaniel. "A Comparison between Approximations of Option Pricing Models and Risk-Neutral Densities using Hermite Polynomials." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berglund, Filip. "Asymptotics of beta-Hermite Ensembles." Thesis, Linköpings universitet, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171096.

Full text
Abstract:
In this thesis we present results about some eigenvalue statistics of the beta-Hermite ensembles, both in the classical cases corresponding to beta = 1, 2, 4, that is the Gaussian orthogonal ensemble (consisting of real symmetric matrices), the Gaussian unitary ensemble (consisting of complex Hermitian matrices) and the Gaussian symplectic ensembles (consisting of quaternionic self-dual matrices) respectively. We also look at the less explored general beta-Hermite ensembles (consisting of real tridiagonal symmetric matrices). Specifically we look at the empirical distribution function and two different scalings of the largest eigenvalue. The results we present relating to these statistics are the convergence of the empirical distribution function to the semicircle law, the convergence of the scaled largest eigenvalue to the Tracy-Widom distributions, and with a different scaling, the convergence of the largest eigenvalue to 1. We also use simulations to illustrate these results. For the Gaussian unitary ensemble, we present an expression for its level density. To aid in understanding the Gaussian symplectic ensemble we present properties of the eigenvalues of quaternionic matrices. Finally, we prove a theorem about the symmetry of the order statistic of the eigenvalues of the beta-Hermite ensembles.<br>I denna kandidatuppsats presenterar vi resultat om några olika egenvärdens-statistikor från beta-Hermite ensemblerna, först i de klassiska fallen då beta = 1, 2, 4, det vill säga den gaussiska ortogonala ensemblen (bestående av reella symmetriska matriser), den gaussiska unitära ensemblen (bestående av komplexa hermitiska matriser) och den gaussiska symplektiska ensemblen (bestående av kvaternioniska själv-duala matriser). Vi tittar även på de mindre undersökta generella beta-Hermite ensemblerna (bestående av reella symmetriska tridiagonala matriser). Specifikt tittar vi på den empiriska fördelningsfunktionen och två olika normeringar av det största egenvärdet. De resultat vi presenterar för dessa statistikor är den empiriska fördelningsfunktionens konvergens mot halvcirkel-fördelningen, det normerade största egenvärdets konvergens mot Tracy-Widom fördelningen, och, med en annan normering, största egenvärdets konvergens mot 1. Vi illustrerar även dessa resultat med hjälp av simuleringar. För den gaussiska unitära ensemblen presenterar vi ett uttryck för dess nivåtäthet. För att underlätta förståelsen av den gaussiska symplektiska ensemblen presenterar vi egenskaper hos egenvärdena av kvaternioniska matriser. Slutligen bevisar vi en sats om symmetrin hos ordningsstatistikan av egenvärdena av beta-Hermite ensemblerna.
APA, Harvard, Vancouver, ISO, and other styles
10

Obrist, Dominik. "On the stability of the swept leading-edge boundary layer /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/6767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Neiger, Vincent. "Bases of relations in one or several variables : fast algorithms and applications." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN052.

Full text
Abstract:
Dans cette thèse, nous étudions des algorithmes pour un problème de recherche de relations à une ou plusieurs variables. Il généralise celui de calculer une solution à un système d’équations linéaires modulaires sur un anneau de polynômes, et inclut par exemple le calcul d’approximants de Hermite-Padé ou d’interpolants bivariés. Plutôt qu’une seule solution, nous nous attacherons à calculer un ensemble de générateurs possédant de bonnes propriétés. Précisément, l’entrée de notre problème consiste en un module de dimension finie spécifié par l’action des variables sur ses éléments, et en un certain nombre d’éléments de ce module ; il s’agit de calculer une base de Gröbner du modules des relations entre ces éléments. En termes d’algèbre linéaire, l’entrée décrit une matrice avec une structure de type Krylov, et il s’agit de calculer sous forme compacte une base du noyau de cette matrice. Nous proposons plusieurs algorithmes en fonction de la forme des matrices de multiplication qui représentent l’action des variables. Dans le cas d’une matrice de Jordan,nous accélérons le calcul d’interpolants multivariés sous certaines contraintes de degré ; nos résultats pour une forme de Frobenius permettent d’accélérer le calcul de formes normales de matrices polynomiales univariées. Enfin, dans le cas de plusieurs matrices denses, nous accélérons le changement d’ordre pour des bases de Gröbner d’idéaux multivariés zéro-dimensionnels<br>In this thesis, we study algorithms for a problem of finding relations in one or several variables. It generalizes that of computing a solution to a system of linear modular equations over a polynomial ring, including in particular the computation of Hermite- Padéapproximants and bivariate interpolants. Rather than a single solution, we aim at computing generators of the solution set which have good properties. Precisely, the input of our problem consists of a finite-dimensional module given by the action of the variables on its elements, and of some elements of this module; the goal is to compute a Gröbner basis of the module of syzygies between these elements. In terms of linear algebra, the input describes a matrix with a type of Krylov structure, and the goal is to compute a compact representation of a basis of the nullspace of this matrix. We propose several algorithms in accordance with the structure of the multiplication matrices which specify the action of the variables. In the case of a Jordan matrix, we accelerate the computation of multivariate interpolants under degree constraints; our result for a Frobenius matrix leads to a faster algorithm for computing normal forms of univariate polynomial matrices. In the case of several dense matrices, we accelerate the change of monomial order for Gröbner bases of multivariate zero-dimensional ideals
APA, Harvard, Vancouver, ISO, and other styles
12

Xu, Lina. "Simulation methods for stochastic differential equations in finance." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134388/1/Lina_Xu_Thesis.pdf.

Full text
Abstract:
This thesis resolves a number of econometric problems relating to the use of stochastic differential equations based on computer-intensive simulation methods. Stochastic differential equations play an important role in modern finance. They have been used to model the trajectories of key variables such as short-term interest rates and the volatility of financial assets. The central theme of the thesis is the use of Hermite polynomials to approximate the transitional probability distribution functions of stochastic differential equations. Based on these approximations, a new method is proposed for simulating solutions to these equations and new testing procedures are developed to examine the fit of the equations to observed data.
APA, Harvard, Vancouver, ISO, and other styles
13

Brazão, A. F. "Aplicação do polinômio de Hermite-Caos para a determinação da carga de instabilidade paramétrica de cascas cilíndricas com incerteza nos parâmetros físicos e geométricos." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/4082.

Full text
Abstract:
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-04T20:56:59Z No. of bitstreams: 2 Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)<br>Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T09:48:34Z (GMT) No. of bitstreams: 2 Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)<br>Made available in DSpace on 2015-02-05T09:48:34Z (GMT). No. of bitstreams: 2 Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-04<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>The present study aims to investigate the influence of uncertainties in physical and geometric parameters to obtain the load parametric instability of cylindrical shell, using the Galerkin method with the stochastic polynomial Hermite-Caos. The nonlinear equations of motion of the cylindrical shell are deduced from their functional power considering the strain field proposed by Donnell´s nonlinear shallow shell theory. The uncertainties are considered as random parameters with probability density function known in the partial differential equation of motion of the cylindrical shell, which it becomes a stochastic partial differential equation due to the presence of randomness. First, the discretization of the stochastic problem is performed using the stochastic Galerkin method together with polynomial Hermite-Chaos, to transform the stochastic partial differential equation into a set of equivalent deterministic partial differential equations, which take into account the randomness of the system. Then, the discretization of the lateral field displacement is made by a perturbation procedure, indicating the nonlinear vibration modes which couple to the linear vibration mode. The set of partial differential equations is transformed into a deterministic system of equations deterministic ordinary second order in time. Uncertainty is considered in one of its parameters: the Young modulus, thickness and amplitude of initial geometric imperfection. Then we analyze the influence of randomness in two parameters simultaneously: the thickness and the Young modulus. Once obtained the system of ordinary differential equations deterministic containing the randomness of the parameters, the integration over discrete time system is made from the Runge- Kutta fourth order to obtain results as the time response, bifurcation diagrams and boundaries of instability which are compared with deterministic analysis, indicating that polynomial Hermite-Chaos is a good numerical tool for predicting the load parametric instability without the need to perform a process of sampling.<br>O presente trabalho tem como objetivo investigar a influência de incertezas nos parâmetros físicos e geométricos para a determinação da carga de instabilidade paramétrica da casca cilíndrica, utilizando o método de Galerkin Estocástico juntamente com o polinômio de Hermite-Caos. As equações não-lineares de movimento da casca cilíndrica são deduzidas a partir de seus funcionais de energia considerando o campo de deformações proposto pela teoria não linear de Donnell para cascas esbeltas. As incertezas são consideradas como parâmetros aleatórios com função de densidade de probabilidade conhecida na equação diferencial parcial de movimento da casca cilíndrica, que passa a ser uma equação diferencial parcial estocástica devido à presença da aleatoriedade. Primeiramente, faz-se a discretização do problema estocástico utilizando o método de Galerkin Estocástico juntamente com o polinômio de Hermite-Caos, para transformar a equação diferencial parcial estocástica em um conjunto de equações diferenciais parciais determinísticas equivalentes, que levem em consideração a aleatoriedade do sistema. Em seguida, apresenta-se a discretização do campo de deslocamentos laterais através do Método da Perturbação, indicando os modos não-lineares de vibração que se acoplam ao modo linear de vibração, para que o conjunto de equações diferenciais parciais determinísticas seja transformado em um sistema de equações ordinárias determinísticas de segunda ordem no tempo. A incerteza é considerada inicialmente em apenas um de seus parâmetros: no módulo de elasticidade, na espessura e na amplitude da imperfeição geométrica inicial. Em seguida, analisa-se a influência de aleatoriedades em dois parâmetros simultaneamente, sendo eles: a espessura e o módulo de elasticidade. Uma vez obtido o sistema de equações diferenciais ordinárias determinísticas que contêm as aleatoriedades dos parâmetros, a integração ao longo do tempo do sistema discretizado é feita a partir do método de Runge-Kutta de quarta ordem, obtendo-se resultados como resposta no tempo, diagramas de bifurcação e fronteiras de instabilidade, que são comparados com análises determinísticas, indicando que o polinômio de Hermite-Caos é uma boa ferramenta numérica para prever a carga de instabilidade paramétrica sem a necessidade de se realizar um processo de amostragens.
APA, Harvard, Vancouver, ISO, and other styles
14

Allanson, Oliver Douglas. "Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/11916.

Full text
Abstract:
Vlasov-Maxwell equilibria are characterised by the self-consistent descriptions of the steady-states of collisionless plasmas in particle phase-space, and balanced macroscopic forces. We study the theory of Vlasov-Maxwell equilibria in one spatial dimension, as well as its application to current sheet and flux tube models. The ‘inverse problem' is that of determining a Vlasov-Maxwell equilibrium distribution function self-consistent with a given magnetic field. We develop the theory of inversion using expansions in Hermite polynomial functions of the canonical momenta. Sufficient conditions for the convergence of a Hermite expansion are found, given a pressure tensor. For large classes of DFs, we prove that non-negativity of the distribution function is contingent on the magnetisation of the plasma, and make conjectures for all classes. The inverse problem is considered for nonlinear ‘force-free Harris sheets'. By applying the Hermite method, we construct new models that can describe sub-unity values of the plasma beta (βpl) for the first time. Whilst analytical convergence is proven for all βpl, numerical convergence is attained for βpl = 0.85, and then βpl = 0.05 after a ‘re-gauging' process. We consider the properties that a pressure tensor must satisfy to be consistent with ‘asymmetric Harris sheets', and construct new examples. It is possible to analytically solve the inverse problem in some cases, but others must be tackled numerically. We present new exact Vlasov-Maxwell equilibria for asymmetric current sheets, which can be written as a sum of shifted Maxwellian distributions. This is ideal for implementations in particle-in-cell simulations. We study the correspondence between the microscopic and macroscopic descriptions of equilibrium in cylindrical geometry, and then attempt to find Vlasov-Maxwell equilibria for the nonlinear force-free ‘Gold-Hoyle' model. However, it is necessary to include a background field, which can be arbitrarily weak if desired. The equilibrium can be electrically non-neutral, depending on the bulk flows.
APA, Harvard, Vancouver, ISO, and other styles
15

Langenau, Holger. "Best constants in Markov-type inequalities with mixed weights." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-200815.

Full text
Abstract:
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given<br>Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt
APA, Harvard, Vancouver, ISO, and other styles
16

Challa, Subhash. "Nonlinear state estimation and filtering with applications to target tracking problems." Thesis, Queensland University of Technology, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Meguellati, Fatima. "Estimation par approximation de Laplace dans les modèles GLM Mixtes : application à la gravité corporelle maximale des accidents de la route." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10204/document.

Full text
Abstract:
Cette thèse est une contribution à la construction de méthodes statistiques applicables à l’évaluation (modélisation et estimation) de certains indices utilisés pour analyser la gravité corporelle des accidents de la route. On se focalise sur quatre points lors du développement de la méthodologie adoptée : la sélection des variables (ou facteurs) présentant un effet aléatoire, la construction de modèles logistique-normaux mixtes, l’estimation des paramètres par approximation de Laplace et PQL (quasi-vraisemblance pénalisée), et la comparaison de la performance des méthodes d’estimation. Dans une première contribution, on construit un modèle logistique-Normal avec « Type de collision » comme variable à effet aléatoire pour analyser la gravité corporelle maximale observée dans un échantillon de véhicules accidentés. Des méthodes d’estimation fondées sur l’approximation de Laplace de la log-vraisemblance sont proposées pour estimer et analyser la contribution des variables présentes dans le modèle. On compare, par simulation, cette approximation Laplacienne à celle basée sur l’adaptation des polynômes de Gauss-Hermite (AGH). On montre que les deux approches sont équivalentes par rapport à la précision de l’estimation bien qu’AGH soit légèrement supérieure. Une deuxième contribution consiste à adapter certains algorithmes de la famille PQL à l’estimation des paramètres d’un deuxième modèle et à comparer sa performance en termes de biais aux méthodes de Laplace et AGH. Deux exemples de données simulées illustrent les résultats obtenus. Dans une troisième et dense contribution, on identifie plusieurs modèles logistique-normaux mixtes avec plus d’un effet aléatoire. La convergence numérique des algorithmes (Laplace, AGH, PQL) ainsi que la précision des estimations sont étudiées. Des simulations ainsi qu’une base de données détaillées d’accidents sont utilisées pour analyser la performance des modèles à détecter des véhicules contenant des usagers ayant des blessures graves corporelles maximales. Une programmation orientée R accompagnent l’ensemble des résultats obtenus. La thèse se termine sur des perspectives relatives aux critères de sélection de modèles GLM Mixtes et à l’extension de ces modèles à la famille multinomiale<br>This thesis is a contribution to the construction of statistical methods for the evaluation (modeling and estimation) of some indices used to analyze the injury severity of road crashes. We focus on four points during the development of the adopted methodology: the random variables (or factors) selection, the construction of mixed logistic-Normal model, the parameters estimation by Laplace approximation and PQL (penalized quasi-likelihood) and the performance comparison of the estimation methods. In a first contribution, a logistic-Normal model is constructed with "collision type" as random variable to analyze the maximum injury severity observed in a sample of crashed vehicles. Estimation methods based on the Laplace approximation of the log-likelihood are proposed to estimate and analyze the contribution of variables in the model. We compare, by simulation, this Laplacian approximation to those based on the adaptation of Gauss-Hermite polynomials (AGH). We show that the two approaches are equivalent with respect to the accuracy of the estimate although AGH is superior. A second contribution is to adapt some algorithms of PQL family to estimate the parameters of a second model and compare its performance to Laplace and AGH methods in terms of bias. Two examples of simulated data illustrate the obtained results. In a third and dense contribution, we identify several mixed logistic-Normal models with more than one random effect. The convergence of the algorithms (Laplace, AGH, and PQL) and the precision of the estimates are investigated. Simulations as well as a database of detailed crash data are used to analyze the models performance to detect vehicles containing users with maximum injury severity. Programming oriented R accompany all results. The thesis concludes with perspectives on GLM Mixed models selection criteria and the extension of these models to the multinomial family
APA, Harvard, Vancouver, ISO, and other styles
18

Langenau, Holger. "Best constants in Markov-type inequalities with mixed weights." Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2015. https://monarch.qucosa.de/id/qucosa%3A20429.

Full text
Abstract:
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given.<br>Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.
APA, Harvard, Vancouver, ISO, and other styles
19

Ould, Mohamed Abdel Haye Mohamedou. "Théorèmes limites pour des processus à longue mémoire saisonnière." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2001. http://tel.archives-ouvertes.fr/tel-00001326.

Full text
Abstract:
Nous étudions le comportement asymptotique de statistiques ou fonctionnelles liées à des processus à longue mémoire saisonnière. Nous nous concentrons sur les lignes de Donsker et sur le processus empirique. Les suites considérées sont de la forme $G(X_n)$ où $(X_n)$ est un processus gaussien ou linéaire. Nous montrons que les résultats que Taqqu et Dobrushin ont obtenus pour des processus à longue mémoire dont la covariance est à variation régulière à l'infini peuvent être en défaut en présence d'effets saisonniers. Les différences portent aussi bien sur le coefficient de normalisation que sur la nature du processus limite. Notamment nous montrons que la limite du processus empirique bi-indexé, bien que restant dégénérée, n'est plus déterminée par le degré de Hermite de la fonction de répartition des données. En particulier, lorsque ce degré est égal à 1, la limite n'est plus nécessairement gaussienne. Par exemple on peut obtenir une combinaison de processus de Rosenblatt indépendants. Ces résultats sont appliqués à quelques problèmes statistiques comme le comportement asymptotique des U-statistiques, l'estimation de la densité et la détection de rupture.
APA, Harvard, Vancouver, ISO, and other styles
20

Kratz, Marie. "Some contributions in probability and statistics of extremes." Habilitation à diriger des recherches, Université Panthéon-Sorbonne - Paris I, 2005. http://tel.archives-ouvertes.fr/tel-00239329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Abbas, Lamia. "Inégalités de Landau-Kolmogorov dans des espaces de Sobolev." Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00776349.

Full text
Abstract:
Ce travail est dédié à l'étude des inégalités de type Landau-Kolmogorov en normes L2. Les mesures utilisées sont celles d'Hermite, de Laguerre-Sonin et de Jacobi. Ces inégalités sont obtenues en utilisant une méthode variationnelle. Elles font intervenir la norme d'un polynômes p et celles de ces dérivées. Dans un premier temps, on s'intéresse aux inégalités en une variable réelle qui font intervenir un nombre quelconque de normes. Les constantes correspondantes sont prises dans le domaine où une certaine forme bilinéaire est définie positive. Ensuite, on généralise ces résultats aux polynômes à plusieurs variables réelles en utilisant le produit tensoriel dans L2 et en faisant intervenir au plus les dérivées partielles secondes. Pour les mesures d'Hermite et de Laguerre-Sonin, ces inégalités sont étendues à toutes les fonctions d'un espace de Sobolev. Pour la mesure de Jacobi on donne des inégalités uniquement pour les polynômes d'un degré fixé par rapport à chaque variable.
APA, Harvard, Vancouver, ISO, and other styles
22

Gupta, Somit. "Hermite Forms of Polynomial Matrices." Thesis, 2011. http://hdl.handle.net/10012/6108.

Full text
Abstract:
This thesis presents a new algorithm for computing the Hermite form of a polynomial matrix. Given a nonsingular n by n matrix A filled with degree d polynomials with coefficients from a field, the algorithm computes the Hermite form of A in expected number of field operations similar to that of matrix multiplication. The algorithm is randomized of the Las Vegas type.
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Myung Sub. "Hermite form computation of matrices of differential polynomials." Thesis, 2009. http://hdl.handle.net/10012/4626.

Full text
Abstract:
Given a matrix A in F(t)[D;\delta]^{n\times n} over the ring of differential polynomials, we first prove the existence of the Hermite form H of A over this ring. Then we determine degree bounds on U and H such that UA=H. Finally, based on the degree bounds on U and H, we compute the Hermite form H of A by reducing the problem to solving a linear system of equations over F(t). The algorithm requires a polynomial number of operations in F in terms of the input sizes: n, deg_{D} A, and deg_{t} A. When F=Q it requires time polynomial in the bit-length of the rational coefficients as well.
APA, Harvard, Vancouver, ISO, and other styles
24

KEATING, SALVATRICE FARINELLA. "FAMILIES OF THETA FUNCTIONS INDEXED BY HERMITE POLYNOMIALS." 1987. https://scholarworks.umass.edu/dissertations/AAI8727066.

Full text
Abstract:
This dissertation deals with a generalization of Jacobi's inversion formula and has as a focal point the construction of an infinite family of functions which satisfy Riemann's functional equation yet are not equal to the Riemann zeta function. In the process some known results are generalized and some identities are derived.
APA, Harvard, Vancouver, ISO, and other styles
25

Mathew, Abraham T. "Studies in parameter estimation of continuous-time systems using Hermite polynomials." Thesis, 1995. http://localhost:8080/xmlui/handle/12345678/5481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sanjay, P. K. "Riesz Transforms Associated With Heisenberg Groups And Grushin Operators." Thesis, 2012. https://etd.iisc.ac.in/handle/2005/2496.

Full text
Abstract:
We characterise the higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. We also prove the boundedness of the higher order Riesz transforms associated to the Hermite operator. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to special Hermite and Laguerre expansions. Next we study the Riesz transforms associated to the Grushin operator G = - Δ - |x|2@t2 on Rn+1. We prove that both the first order and higher order Riesz transforms are bounded on Lp(Rn+1): We also prove that norms of the first order Riesz transforms are independent of the dimension n.
APA, Harvard, Vancouver, ISO, and other styles
27

Sanjay, P. K. "Riesz Transforms Associated With Heisenberg Groups And Grushin Operators." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2496.

Full text
Abstract:
We characterise the higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. We also prove the boundedness of the higher order Riesz transforms associated to the Hermite operator. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to special Hermite and Laguerre expansions. Next we study the Riesz transforms associated to the Grushin operator G = - Δ - |x|2@t2 on Rn+1. We prove that both the first order and higher order Riesz transforms are bounded on Lp(Rn+1): We also prove that norms of the first order Riesz transforms are independent of the dimension n.
APA, Harvard, Vancouver, ISO, and other styles
28

Rebs, Christian. "Asymptotic bounds and values for the norm of the Laplace operator and other partial differential operators on spaces of polynomials." 2019. https://monarch.qucosa.de/id/qucosa%3A72803.

Full text
Abstract:
In der vorliegenden Dissertation werden endlichdimensionale Räume multivariater Polynome in N Variablen mit der Laguerre-, Hermite- bzw. Legendrenorm versehen. Dabei sei der Höchstgrad der Polynome oder die Summe der Grade der Variablen durch eine natürliche Zahl n nach oben beschränkt. Wir betrachten auf diesen Räumen den Laplaceoperator und zwei weitere partielle Differentialoperatoren und interessieren uns für das Verhalten der von den Polynomnormen induzierten Operatornormen dieser Operatoren, wenn n gegen unendlich strebt. Im Fall der Laguerre- und Legendrenorm werden asymptotische obere und untere Schranken der Operatornormen hergeleitet. Im Fall der Hermitenorm kann sogar eine asymptotische Formel gezeigt werden, wenn man voraussetzt, dass der Höchstgrad der Poynome duch n beschränkt ist.
APA, Harvard, Vancouver, ISO, and other styles
29

Tavares, José Pedro Moura. "A comparison of risk aversion between markets." Master's thesis, 2013. http://hdl.handle.net/10400.14/15519.

Full text
Abstract:
In this study we perform a comparison between the Dow Jones Industrial Average and the FTSE 100 indexes concerning their estimated risk aversions. Risk neutral densities are calculated for both indexes using a polynomial-lognormal, a GB2 and a mixture of two lognormal distributions; we show that the best fit to observed data is obtained using the latter. For the method of best fit, and assuming a power utility function, the risk aversion of investors is calculated using a maximum likelihood method and a likelihood ratio. The FTSE 100 presents the highest value of risk aversion of the two indexes, as well as the lowest volatility. A negative correlation is found between risk aversion estimates and the volatility of the underlying index.
APA, Harvard, Vancouver, ISO, and other styles
30

Desrosiers, Gabriel. "Développements théoriques et empiriques des tests lisses d'ajustement des modèles ARMA vectoriels." Thesis, 2020. http://hdl.handle.net/1866/25475.

Full text
Abstract:
Lors de la validation des modèles de séries chronologiques, une hypothèse qui peut s'avérer importante porte sur la loi des données. L'approche préconisée dans ce mémoire utilise les tests lisses d'ajustement. Ce mémoire apporte des développements théoriques et empiriques des tests lisses pour les modèles autorégressifs moyennes mobiles (ARMA) vectoriels. Dans des travaux précédents, Ducharme et Lafaye de Micheaux (2004) ont développé des tests lisses d'ajustement reposant sur les résidus des modèles ARMA univariés. Tagne Tatsinkou (2016) a généralisé les travaux dans le cadre des modèles ARMA vectoriels (VARMA), qui s'avèrent potentiellement utiles dans les applications avec données réelles. Des considérations particulières au cas multivarié, telles que les paramétrisations structurées dans les modèles VARMA sont abordées. Les travaux de Tagne Tatsinkou (2016) sont complétés selon les angles théoriques et des études de simulations additionnelles sont considérées. Les nouveaux tests lisses reposent sur des familles de polynômes orthogonaux. Dans cette étude, une attention particulière est accordée aux familles de Legendre et d'Hermite. La contribution théorique majeure est une preuve complète que la statistique de test est invariante aux transformations linéaires affines lorsque la famille d'Hermite est adoptée. Les résultats de Tagne Tatsinkou (2016) représentent une première étape importante, mais ils sont incomplets quant à l'utilisation des résidus du modèle. Les tests proposés reposent sur une famille de densités sous les hypothèses alternatives d'ordre k. La sélection automatique de l'ordre maximal, basée sur les résultats de Ledwina (1994), est discutée. La sélection automatique est également implantée dans nos études de simulations. Nos études de simulations incluent des modèles bivariés et un modèle trivarié. Dans une étude de niveaux, on constate la bonne performance des tests lisses. Dans une étude de puissance, plusieurs compétiteurs ont été considérés. Il est trouvé que les tests lisses affichent des propriétés intéressantes de puissance lorsque les données proviennent de modèles VARMA avec des innovations dans la classe de lois normales contaminées.<br>When validating time series models, the distribution of the observations represents a potentially important assumption. In this Master's Thesis, the advocated approach uses smooth goodness-of-fit test statistics. This research provides theoretical and empirical developments of the smooth goodness of fit tests for vector autoregressive moving average models (VARMA). In previous work, Ducharme and Lafaye de Micheaux (2004) developed smooth goodness-of-fit tests designed for the residuals of univariate ARMA models. Later, Tagne Tatsinkou (2016) generalized the work within the framework of vector ARMA (VARMA) models, which prove to be potentially useful in real applications. Structured parameterizations, which are considerations specific to the multivariate case, are discussed. The works of Tagne Tatsinkou (2016) are completed, according to theoretical angles, and additional simulation studies are also considered. The new smooth tests are based on families of orthogonal polynomials. In this study, special attention is given to Legendre's family and Hermite's family. The major theoretical contribution in this work is a complete proof that the test statistic is invariant to linear affine transformations when the Hermite family is adopted. The results of Tagne Tatsinkou (2016) represent an important first step, but they were incomplete with respect to the use of the model residuals. The proposed tests are based on a family of densities under alternative hypotheses of order k. A data driven method to choose the maximal order, based on the results of Ledwina (1994), is discussed. In our simulation studies, the automatic selection is also implemented. Our simulation studies include bivariate models and a trivariate model. In the level study, we can appreciate the good performance of the smooth tests. In the power study, several competitors were considered. We found that the smooth tests displayed interesting power properties when the data came from VARMA models with innovations in the class of contaminated normal distributions.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhou, Wei. "Fast Order Basis and Kernel Basis Computation and Related Problems." Thesis, 2012. http://hdl.handle.net/10012/7326.

Full text
Abstract:
In this thesis, we present efficient deterministic algorithms for polynomial matrix computation problems, including the computation of order basis, minimal kernel basis, matrix inverse, column basis, unimodular completion, determinant, Hermite normal form, rank and rank profile for matrices of univariate polynomials over a field. The algorithm for kernel basis computation also immediately provides an efficient deterministic algorithm for solving linear systems. The algorithm for column basis also gives efficient deterministic algorithms for computing matrix GCDs, column reduced forms, and Popov normal forms for matrices of any dimension and any rank. We reduce all these problems to polynomial matrix multiplications. The computational costs of our algorithms are then similar to the costs of multiplying matrices, whose dimensions match the input matrix dimensions in the original problems, and whose degrees equal the average column degrees of the original input matrices in most cases. The use of the average column degrees instead of the commonly used matrix degrees, or equivalently the maximum column degrees, makes our computational costs more precise and tighter. In addition, the shifted minimal bases computed by our algorithms are more general than the standard minimal bases.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography