To see the other types of publications on this topic, follow the link: Hertzsprung.

Journal articles on the topic 'Hertzsprung'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hertzsprung.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Langer, N., and R. P. Kudritzki. "The spectroscopic Hertzsprung-Russell diagram." Astronomy & Astrophysics 564 (April 2014): A52. http://dx.doi.org/10.1051/0004-6361/201423374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ayres, Thomas R. "Hot Times in the Hertzsprung Gap." International Astronomical Union Colloquium 152 (1996): 113–20. http://dx.doi.org/10.1017/s0252921100035831.

Full text
Abstract:
Moderate-mass giants represent a touchstone for probing the mechanisms of magnetic activity among fast-rotating convective stars. Extreme ultraviolet and soft X-ray observations of such stars detect generally hot coronae: the Hertzsprung-gap giants (F5–G2), in particular, have remarkable high-excitation peaks (107 K, or hotter) in their emission-measure distributions. While the high-temperature coronal plasmas are reminiscent of violent solar flares, the high-energy spectra of the Hertzsprung-gap giants appear to be quite steady over time; in contrast to other hot-corona objects whose optical
APA, Harvard, Vancouver, ISO, and other styles
3

Wilson, R. E., and Jarrod R. Hurley. "Impersonal parameters from Hertzsprung-Russell diagrams." Monthly Notices of the Royal Astronomical Society 344, no. 4 (2003): 1175–86. http://dx.doi.org/10.1046/j.1365-8711.2003.06895.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Loon, Jacco Th. "Cool Stars in the Hertzsprung–Russell Diagram." Proceedings of the International Astronomical Union 11, A29B (2015): 475–77. http://dx.doi.org/10.1017/s1743921316005925.

Full text
Abstract:
AbstractAs the opening review to the focus meeting “Stellar Behemoths: Red Supergiants across the Local Universe”, I here provide a brief introduction to red supergiants, setting the stage for subsequent contributions. I highlight some recent activity in the field, and identify areas of progress, areas where progress is needed, and how such progress might be achieved.
APA, Harvard, Vancouver, ISO, and other styles
5

Christensen-Dalsgaard, Jørgen. "A Hertzsprung-Russell diagram for stellar oscillations." Symposium - International Astronomical Union 123 (1988): 295–98. http://dx.doi.org/10.1017/s0074180900158279.

Full text
Abstract:
I present evolutionary tracks and curves of constant central hydrogen abundance in diagrams based on frequencies of high-order, low-degree p modes. For stars with masses between 0.7 and 1.5 M⊙, a clean separation is obtained between the effects of varying mass and varying evolutionary state.
APA, Harvard, Vancouver, ISO, and other styles
6

MacLeod, Morgan, Matteo Cantiello, and Melinda Soares-Furtado. "Planetary Engulfment in the Hertzsprung–Russell Diagram." Astrophysical Journal 853, no. 1 (2018): L1. http://dx.doi.org/10.3847/2041-8213/aaa5fa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zaninetti, L. "Semi-analytical formulas for the Hertzsprung-Russell diagram." Serbian Astronomical Journal, no. 177 (2008): 73–85. http://dx.doi.org/10.2298/saj0877073z.

Full text
Abstract:
The absolute visual magnitude as function of the observed color (B-V), also named Hertzsprung-Russell diagram, can be described through five equations; that when calibrated stars are available means eight constants. The developed framework allows to deduce the remaining physical parameters, mass, radius and luminosity. This new technique is applied to the first 10 pc, the first 50 pc, the Hyades and to the determination of the distance of a cluster. The case of the white dwarfs is analyzed assuming the absence of calibrated data: our equation produces a smaller ?2 with respect to the standard
APA, Harvard, Vancouver, ISO, and other styles
8

Kolb, U. "Soft X-ray transients in the Hertzsprung gap." Monthly Notices of the Royal Astronomical Society 297, no. 2 (1998): 419–26. http://dx.doi.org/10.1046/j.1365-8711.1998.01489.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hubrig, S., P. North, and G. Mathys. "Magnetic Ap Stars in the Hertzsprung‐Russell Diagram." Astrophysical Journal 539, no. 1 (2000): 352–63. http://dx.doi.org/10.1086/309189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adamczak, Jens, and David L. Lambert. "CARBON AND OXYGEN ABUNDANCES ACROSS THE HERTZSPRUNG GAP." Astrophysical Journal 791, no. 1 (2014): 58. http://dx.doi.org/10.1088/0004-637x/791/1/58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Doom, C., J. P. de Greve, and C. de Loore. "Stellar evolution in the upper Hertzsprung-Russell diagram." Astrophysical Journal 303 (April 1986): 136. http://dx.doi.org/10.1086/164060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Takeda, Yoichi, Gwanghui Jeong, and Inwoo Han. "Do Hertzsprung‐gap stars show any chemical anomaly?" Astronomische Nachrichten 340, no. 5 (2019): 364–85. http://dx.doi.org/10.1002/asna.201913532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Farag, Ebraheem, F. X. Timmes, Morgan Taylor, Kelly M. Patton, and R. Farmer. "On Stellar Evolution in a Neutrino Hertzsprung–Russell Diagram." Astrophysical Journal 893, no. 2 (2020): 133. http://dx.doi.org/10.3847/1538-4357/ab7f2c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Escorza, A., H. M. J. Boffin, A. Jorissen, et al. "Hertzsprung-Russell diagram and mass distribution of barium stars." Astronomy & Astrophysics 608 (December 2017): A100. http://dx.doi.org/10.1051/0004-6361/201731832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reed, B. Cameron. "Vela OB1: Probable New Members and Hertzsprung-Russell Diagram." Astronomical Journal 119, no. 4 (2000): 1855–59. http://dx.doi.org/10.1086/301313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Feoli, A., та L. Mancini. "A HERTZSPRUNG-RUSSELL-LIKE DIAGRAM FOR GALAXIES: THEM•VERSUSMGσ2RELATION". Astrophysical Journal 703, № 2 (2009): 1502–10. http://dx.doi.org/10.1088/0004-637x/703/2/1502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Castro, N., L. Fossati, N. Langer, S. Simón-Díaz, F. R. N. Schneider, and R. G. Izzard. "The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars." Astronomy & Astrophysics 570 (October 2014): L13. http://dx.doi.org/10.1051/0004-6361/201425028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jao, Wei-Chun, and Gregory A. Feiden. "An Enhanced Hertzsprung–Russell Diagram Using Gaia EDR3 Data." Research Notes of the AAS 5, no. 5 (2021): 124. http://dx.doi.org/10.3847/2515-5172/ac053a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

de Jager, C., and H. Nieuwenhuijzen. "Stellar atmospheric instability in the upper part of the Hertzsprung-Russell diagram." Symposium - International Astronomical Union 116 (1986): 255–56. http://dx.doi.org/10.1017/s0074180900149046.

Full text
Abstract:
The upper limt of stellar luminosity in the Hertzsprung-Russell diagram is a line running approximately from (log Teff; log (L/L⊙) = (4.5; 6.3) via (4.0; 5.74) to (3.5; 5.7) (Humphreys and Davidson, 1979; Humpreys, 1983).
APA, Harvard, Vancouver, ISO, and other styles
20

Ng, Y. K., G. Bertelli, C. Chiosi, A. Bressan, H. Habing, and R. S. Le Poole. "PG3, A field in the Bulge of Our Galaxy: Description of a Galactic Model." Symposium - International Astronomical Union 153 (1993): 319–22. http://dx.doi.org/10.1017/s0074180900123423.

Full text
Abstract:
Preliminary results are shown of our study on the metallicities and ages of the stellar populations present in different components along the line of sight to field #3 of the Palomar-Groningen Variable Star Survey (PG3) with synthetic Hertzsprung-Russell Diagrams (HRDs).
APA, Harvard, Vancouver, ISO, and other styles
21

Chu, You-Hua. "Ring nebulae around massive stars throughout the Hertzsprung-Russell diagram." Symposium - International Astronomical Union 212 (2003): 585–95. http://dx.doi.org/10.1017/s0074180900212965.

Full text
Abstract:
Massive stars evolve across the H-R diagram, losing mass along the way and forming a variety of ring nebulae. During the main sequence stage, the fast stellar wind sweeps up the ambient interstellar medium to form an interstellar bubble. After a massive star evolves into a red giant or a luminous blue variable, it loses mass copiously to form a circumstellar nebula. As it evolves further into a WR star, the fast WR wind sweeps up the previous mass loss and forms a circumstellar bubble. Observations of ring nebulae around massive stars not only are fascinating, but also are useful in providing
APA, Harvard, Vancouver, ISO, and other styles
22

Schmitt, J. H. M. M. "Magnetic activity of cool stars in the Hertzsprung-Russell diagram." Proceedings of the International Astronomical Union 7, S286 (2011): 296–306. http://dx.doi.org/10.1017/s1743921312005005.

Full text
Abstract:
AbstractI review the X-ray emission from cool stars with outer convection zones in comparison to the Sun with a focus on the properties of low-activity stars. I present the recent results of long-term X-ray monitoring which demonstrate the existence of X-ray cycles on stars with known calcium cycles. The evidence of a minimum stellar X-ray flux is presented and arguments are put forward for the view that the Sun in its extended minimum between 2008 - 2009 behaved very much like a Maunder-minimum Sun.
APA, Harvard, Vancouver, ISO, and other styles
23

Escorza, A., H. M. J. Boffin, A. Jorissen, et al. "Hertzsprung-Russell diagram and mass distribution of barium stars (Corrigendum)." Astronomy & Astrophysics 625 (May 2019): C3. http://dx.doi.org/10.1051/0004-6361/201731832e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Brady, Kathleen, Sudie Back, and Louise Haynes. "Post-Traumatic Stress Disorder And Substance Abuse: Discussant: Hertzsprung, Meyen." Canadian Journal of Addiction 1, no. 1 (2009): 40. http://dx.doi.org/10.1097/02024458-200912000-00093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Johnson, O., J. J. Drake, V. Kashyap, et al. "The Capella Giants and Coronal Evolution across the Hertzsprung Gap." Astrophysical Journal 565, no. 2 (2002): L97—L100. http://dx.doi.org/10.1086/339364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Scholz, G. "The position of ET And in the Hertzsprung-Russell diagram." Astronomische Nachrichten: A Journal on all Fields of Astronomy 307, no. 1 (1986): 21–25. http://dx.doi.org/10.1002/asna.2113070109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Daszyńska-Daszkiewicz, Jadwiga. "Energetic properties of stellar pulsations across the Hertzsprung-Russell diagram." EPJ Web of Conferences 101 (2015): 01002. http://dx.doi.org/10.1051/epjconf/201510101002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Handler, G. "The domain of Doradus variables in the Hertzsprung-Russell diagram." Monthly Notices of the Royal Astronomical Society 309, no. 2 (1999): L19—L23. http://dx.doi.org/10.1046/j.1365-8711.1999.03005.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Malyuto, V., S. Zubarev, and T. Shvelidze. "Homogenized Hertzsprung-Russell diagram for the open cluster NGC 188." Astronomische Nachrichten 335, no. 8 (2014): 850–64. http://dx.doi.org/10.1002/asna.201312112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fang, Min, Jinyoung Serena Kim, Ilaria Pascucci, and Dániel Apai. "An Improved Hertzsprung–Russell Diagram for the Orion Trapezium Cluster." Astrophysical Journal 908, no. 1 (2021): 49. http://dx.doi.org/10.3847/1538-4357/abcec8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jeffries, R. D. "Age spreads in star forming regions?" Proceedings of the International Astronomical Union 4, S258 (2008): 95–102. http://dx.doi.org/10.1017/s1743921309031743.

Full text
Abstract:
AbstractRotation periods and projected equatorial velocities of pre-main-sequence (PMS) stars in star forming regions can be combined to give projected stellar radii. Assuming random axial orientation, a Monte-Carlo model is used to illustrate that distributions of projected stellar radii are very sensitive to ages and age dispersions between 1 and 10Myr which, unlike age estimates from conventional Hertzsprung-Russell diagrams, are relatively immune to uncertainties due to extinction, variability, distance etc. Application of the technique to the Orion Nebula cluster reveals radius spreads of
APA, Harvard, Vancouver, ISO, and other styles
32

de Jager, Cornells, and Arnout M. van Genderen. "Luminous Blue Variables need not be blue." International Astronomical Union Colloquium 113 (1989): 127–30. http://dx.doi.org/10.1017/s0252921100004371.

Full text
Abstract:
AbstractA number of yellow and red super- and hypergiants show phenomena that are similar to those shown by Luminous Blue Variables. The LBV phenomenon may not be restricted to the blue part of the Hertzsprung-Russell diagram and the conventional name ‘S Dor variables’ seems more appropriate.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Song, Yu Bai, Lin He, and Jifeng Liu. "Stellar X-Ray Activity Across the Hertzsprung–Russell Diagram. I. Catalogs." Astrophysical Journal 902, no. 2 (2020): 114. http://dx.doi.org/10.3847/1538-4357/abb66d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Elbakyan, Vardan G., Eduard I. Vorobyov, Christian Rab, et al. "Episodic excursions of low-mass protostars on the Hertzsprung–Russell diagram." Monthly Notices of the Royal Astronomical Society 484, no. 1 (2018): 146–60. http://dx.doi.org/10.1093/mnras/sty3517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Scholz, R. D., S. Drew Chojnowski, and S. Hubrig. "Strongly magnetic Ap stars in the Gaia DR2 Hertzsprung-Russell diagram." Astronomy & Astrophysics 628 (August 2019): A81. http://dx.doi.org/10.1051/0004-6361/201935752.

Full text
Abstract:
Context. Knowing the distribution of strongly magnetic Ap stars in the Hertzsprung-Russell diagram (HRD) allows us to study the evolution of their magnetic fields across the main sequence (MS). With a newly extended Ap star sample from APOGEE and available Gaia DR2 data, we can now critically review the results of previous studies based on HIPPARCOS data. Aims. To investigate our targets in the Gaia DR2 HRD, we need to define astrometric and photometric quality criteria to remove unreliable data from the HRD. Methods. We used the Gaia DR2 renormalised unit weight error RUWE as our main quality
APA, Harvard, Vancouver, ISO, and other styles
36

Strassmeier, K. G., T. Granzer, M. Kopf, et al. "Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae." Astronomy and Astrophysics 520 (September 2010): A52. http://dx.doi.org/10.1051/0004-6361/201015023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Aurière, M., R. Konstantinova-Antova, P. Petit, et al. "14 Ceti: a probable Ap-star-descendant entering the Hertzsprung gap." Astronomy & Astrophysics 543 (July 2012): A118. http://dx.doi.org/10.1051/0004-6361/201219324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Overduin, James, Jacob Buchman, Jonathan Perry, and Thomas Krause. "The Scourge of Online Solutions and an Academic Hertzsprung–Russell Diagram." Physics Educator 03, no. 02 (2021): 2150007. http://dx.doi.org/10.1142/s2661339521500074.

Full text
Abstract:
We report on preliminary results of a statistical study of student performance in more than a decade of calculus-based introductory physics courses. Treating average homework and test grades as proxies for student effort and comprehension, respectively, we plot comprehension versus effort in an academic version of the astronomical Hertzsprung–Russell diagram (which plots stellar luminosity versus temperature). We study the evolution of this diagram with time, finding that the “academic main sequence” has begun to break down in recent years as student achievement on tests has become decoupled f
APA, Harvard, Vancouver, ISO, and other styles
39

Bohannan, Bruce. "The distribution of types of Luminous Blue Variables." International Astronomical Union Colloquium 113 (1989): 35–44. http://dx.doi.org/10.1017/s0252921100004267.

Full text
Abstract:
AbstractIf Luminous Blue Variables (LBVs) are not each unique types, three broad groups can be characterized depending on the luminosity and location ofLBVsin the Hertzsprung-Russell diagram. To assist in defining the evolutionary nature ofLBVs, connections are made to stars that have similar spectral character with the suggestion that some of these objects that may someday becomeLBVs.
APA, Harvard, Vancouver, ISO, and other styles
40

Cox, Arthur N., Joyce A. Guzik, Michael S. Soukup, and Siobahn M. Morgan. "Theoretical Pulsations of Luminous Blue Variables." International Astronomical Union Colloquium 155 (1995): 192–93. http://dx.doi.org/10.1017/s0252921100036952.

Full text
Abstract:
AbstractBoth radial and low degree and order g-mode nonradial pulsations are predicted for luminous blue variables that occur in the blue supergiant region of the Hertzsprung-Russell diagram. It is found that the radial strange modes have very large growth rates due to helium ionization in models at surface effective temperatures between 10,000 and 20,000 K.
APA, Harvard, Vancouver, ISO, and other styles
41

Mirzoyan, L. V., V. V. Hambarian, and A. T. Garibjanian. "Spectral observations of flare stars." Symposium - International Astronomical Union 137 (1990): 95–98. http://dx.doi.org/10.1017/s0074180900187510.

Full text
Abstract:
Spectral observations of 6 flare stars in the Pleiades cluster are carried out which occupy different positions on the Hertzsprung-Russell diagram relative to the main sequence: above and below it. The spectral indices which are sensible to luminosity or temperature of the star photosphere are determined. Significant differences between indices of the stars belongings to these two groups are not detected.
APA, Harvard, Vancouver, ISO, and other styles
42

Nardetto, Nicolas, Jesper Storm, Wolfgang Gieren, Grzegorz Pietrzyński, and Ennio Poretti. "The Araucaria Project: the Baade-Wesselink projection factor of pulsating stars." Proceedings of the International Astronomical Union 9, S301 (2013): 145–48. http://dx.doi.org/10.1017/s1743921313014233.

Full text
Abstract:
AbstractThe projection factor used in the Baade-Wesselink method of determining the distance of Cepheids makes the link between stellar physics and the cosmological distance scale. A coherent picture of this physical quantity is now provided based on several approaches. We present the latest news on the expected projection factor for different kinds of pulsating stars in the Hertzsprung-Russell diagram.
APA, Harvard, Vancouver, ISO, and other styles
43

Gorynya, N. A., N. N. Samus, M. E. Sachkov, S. V. Antipin, and A. S. Rastorgouev. "New Results of Moscow Cepheid Radial Velocity Programme." International Astronomical Union Colloquium 176 (2000): 242–43. http://dx.doi.org/10.1017/s0252921100057663.

Full text
Abstract:
AbstractA sequence similar to Hertzsprung progression was revealed for Cepheid radial-velocity curves. We separated two pulsation modes for six double-mode Cepheids and determined radii for five of them. Several new spectroscopic-binary Cepheids were discovered; we present new preliminary orbital periods for V496 Aql, VY Cyg, and V1334 Cyg, in a combined table of our results on Cepheid binarity.
APA, Harvard, Vancouver, ISO, and other styles
44

Bi, S. L., та N. Gai. "Solar-like oscillations in red giant ϵ Ophiuchi". Proceedings of the International Astronomical Union 4, S252 (2008): 243–44. http://dx.doi.org/10.1017/s1743921308022874.

Full text
Abstract:
AbstractAsteroseismology is a powerful tool to help determining the internal structure of the stars. Solar-like oscillations have been discovered in the G9.5 red giant ϵ Ophiuchi, and it opened up a new part of the Hertzsprung-Russell diagram to be explored with asteroseismic techniques. We present the detailed study of the properties of ϵ Oph including convective overshooting and extra-mixing.
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Xuefei, and Zhanwen Han. "The Initial–Final Mass Relation for Close Low–Intermediate-Mass Binaries (Non-conservative Case)." International Astronomical Union Colloquium 187 (2002): 291–96. http://dx.doi.org/10.1017/s0252921100001512.

Full text
Abstract:
AbstractEmploying Eggleton’s stellar evolution code, we carry out 150 runs of non-conservative Population I binary evolution calculations with the initial primary mass between 1 and 8 M⊙, the initial mass ratio q = M1/M2 between 1.1 and 4 and the onset of Roche lobe overflow (RLOF) at the early, middle or late Hertzsprung gap. We assume that 50 per cent of the mass lost from the primary during the RLOF is accreted on to the secondary, the other 50 per cent is lost from the system, carrying away the same specific angular momentum as the centre of mass of the primary. We find that the remnant ma
APA, Harvard, Vancouver, ISO, and other styles
46

Vanture, Andrew D., and George Wallerstein. "Carbon, Nitrogen, and Oxygen Abundances of Selected Stars in the Hertzsprung Gap." Publications of the Astronomical Society of the Pacific 111, no. 755 (1999): 84–93. http://dx.doi.org/10.1086/316306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Meyer, D. M.-A., L. Haemmerlé, and E. I. Vorobyov. "On the episodic excursions of massive protostars in the Hertzsprung–Russell diagram." Monthly Notices of the Royal Astronomical Society 484, no. 2 (2019): 2482–98. http://dx.doi.org/10.1093/mnras/sty3527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

DEVORKIN, D. H. "Origins of Modern Astronomy: The History of Astronomy from Herschel to Hertzsprung." Science 227, no. 4691 (1985): 1220–21. http://dx.doi.org/10.1126/science.227.4691.1220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Meng, Zhiguo, Qingshuai Wang, Huihui Wang, Tianxing Wang, and Zhanchuan Cai. "Potential Geologic Significances of Hertzsprung Basin Revealed by CE-2 CELMS Data." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, no. 10 (2018): 3713–20. http://dx.doi.org/10.1109/jstars.2018.2870163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Moskalik, Pawel, and J. Robert Buchler. "The Importance of 3:1 Resonances in Stellar Pulsations." International Astronomical Union Colloquium 111 (1989): 279. http://dx.doi.org/10.1017/s0252921100011878.

Full text
Abstract:
AbstractThe 2:1 resonance between the fundamental and the second overtone modes has received a great deal of attention in the context of Cepheids. It was clearly shown that it causes the Hertzsprung bump progression and brings about the very characteristic observed variation of the Fourier phases with period (Buchler & Goupil, 1984, Ap.J.,279, 394; Klapp, Goupil & Buchler, 1985, Ap.J.,296, 514; Buchler & Kovacs, 1986, Ap.J.,303, 749).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!