To see the other types of publications on this topic, follow the link: Heteroübergang.

Dissertations / Theses on the topic 'Heteroübergang'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Heteroübergang.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Talkenberg, Florian [Verfasser], Frank [Gutachter] Schmidl, Fritz Gutachter] Falk, and Carsten [Gutachter] [Agert. "Halbleiter-Isolator-Halbleiter-Heteroübergang mit Atomlagenabscheidung als Schottky-Tunnel-Solarzelle auf nanostrukturiertem Silizium / Florian Talkenberg ; Gutachter: Frank Schmidl, Fritz Falk, Carsten Agert." Jena : Friedrich-Schiller-Universität Jena, 2016. http://d-nb.info/1177612518/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kozlowski, Fryderyk. "Numerical simulation and optimisation of organic light emitting diodes and photovoltaic cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1134592504212-65990.

Full text
Abstract:
A numerical model and results for the quantitative simulation of multilayer organic light emitting diode (OLED) and organic solar cell (OSC) are presented. In the model, effects like bipolar charge carrier drift and diffusion with field-dependent mobilities, trapping, dopants, indirect and direct bimolecular recombination, singlet Frenkel exciton diffusion, normal decay and quenching effects are taken into account. For an adequate description of multilayer devices with energetic barriers at interfaces between two adjacent organic layers, thermally assisted charge carrier hopping through the interface, interface recombination, and formation of interface charge transfer (CT) states have been introduced in the model. For the simulation of OSC, the generation of carrier pairs in the mixed layer or at the interface is additionally implemented. The light absorption profile is calculated from optical simulations and used as an input for the electrical simulation. The model is based on three elements: the Poisson equation, the rate equations for charge carriers and the rate equations for singlet Frenkel excitons. These equations are simultaeously solved by spatial and temporal discretisation using the appropriate boundary conditions and electrical parameters. The solution is found when a steady state is reached, as indicated by a constant value of current density. The simulation provides a detailed look into the distribution of electric field and concentration of free and trapped carriers at a particular applied voltage. For organic light emitting diodes, the numerical model helps to analyze the problems of different structures and provides deeper insight into the relevant physical mechanisms involved in device operation. Moreover, it is possible to identify technological problems for certain sets of devices. For instance, we could show that ? in contrast to literature reports - the contact between Alq3 and LiF/Al did not show ohmic behaviour for the series of devices. The role of an additional organic blocking layer between HTL and EML was presented. The explanation for the higher creation efficiency for singlet excitons in the three-layer structure is found in the separation of free holes and electrons accumulating close to the internal interface 1-Naphdata/Alq3. The numerical calculation has demonstrated the importance of controlled doping of the organic materials, which is a way to obtain efficient light emitting diodes with low operating voltage. The experimental results has been reproduced by numerical simulation for a series of OLEDs with different thicknesses of the hole transport layer and emitting layer and for doped emitting layers. The advantages and drawbacks of solar cells based on flat heterojunctions and bulk heterojunctions are analyzed. From the simulations, it can be understood why bulk-heterojunctions typically yield higher photocurrents while flat heterojunctions typically feature higher fill factors. In p-i-n ?structures, p and n are doped wide gap materials and i is a photoactive donor-acceptor blend layer using, e.g,. zinc phthalocyanine as a donor and C60 as an acceptor component. It is found that by introducing trap states, the simulation is able to reproduce the linear dependence of short circuit currents on the light intensity. The apparent light-induced shunt resistance often observed in organic solar cells can also be explained by losses due to trapping and indirect recombination of photogenerated carriers, which we consider a crucial point of our work. However, these two effects, the linear scaling of the photocurrent with light intensity and the apparent photoshunt, could also be reproduced when field-dependent geminate recombination is assumed to play a dominant role. First results that show a temperature independent short circuit photocurrent favour the model based on trap-mediated indirect recombination.
APA, Harvard, Vancouver, ISO, and other styles
3

Männig, Bert. "Organische p-i-n Solarzellen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1105536432875-74979.

Full text
Abstract:
In this work a p-i-n type heterojunction architecture for organic solar cells is shown, where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled coevaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide gap layers, respectively. The conductivity and field effect mobility of single doped layers can be described quantitatively in a self-consistent way by a percolation model. For the solar cells the photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. The solar cells exhibit a maximum external quantum efficiency of 40% between 630nm and 700nm wavelength. With the help of an optical multilayer model, the optical properties of the solar cells are optimized by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. The optically optimized device shows an internal quantum efficiency of around 85% at short-circuit conditions and a power-conversion efficiency of 1.7%.
APA, Harvard, Vancouver, ISO, and other styles
4

Männig, Bert. "Organische p-i-n Solarzellen." Doctoral thesis, Technische Universität Dresden, 2004. https://tud.qucosa.de/id/qucosa%3A24445.

Full text
Abstract:
In this work a p-i-n type heterojunction architecture for organic solar cells is shown, where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled coevaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide gap layers, respectively. The conductivity and field effect mobility of single doped layers can be described quantitatively in a self-consistent way by a percolation model. For the solar cells the photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. The solar cells exhibit a maximum external quantum efficiency of 40% between 630nm and 700nm wavelength. With the help of an optical multilayer model, the optical properties of the solar cells are optimized by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. The optically optimized device shows an internal quantum efficiency of around 85% at short-circuit conditions and a power-conversion efficiency of 1.7%.
APA, Harvard, Vancouver, ISO, and other styles
5

Müller, Toni. "Infrared Absorber Materials in Organic Small Molecule Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-178375.

Full text
Abstract:
Broadening the spectrum available to solar cells towards infrared wavelengths is one way to increase efficiency of organic solar devices. This thesis explores the possibilities of these organic heterojunction devices and two different material classes in thin films and organic solar devices: tin phthalocyanines (SnPcs) and aza-bodipys. To estimate the efficiency reachable under sunlight, model calculations are done for single and tandem cells. These calculations include a distinction between the optical gap and the electrical gap and the splitting of the quasi-Fermi levels. With a number of assumptions, e.g. a fill factor (FF) and an external quantum efficiency (EQE) within the absorption range of 65%, the resulting efficiencies are 15% in a single cell and of 21% in a tandem cell. Halogenation is known to lower the energy levels of molecules without chang-ing the optical band gap. Three different fluorinated and chlorinated SnPcs are investigated and compared to the neat SnPc. While chlorination of SnPc worsens the transport properties of the active layer leading to a lowered FF, the fluorina-tion of SnPc results in the intended increase in VOC and, consequently, efficiency for planar heterojunctions. In bulk heterojunction, however, fluorination does not change the efficiency probably due to the unstably bound fluorine. One method to modify the ionization potential (IP) and the absorption of the second material class, the aza-bodipys, is the annulation of the benzene ring. The energy levels determined by CV and UPS measurement and DFT-calculation show very good agreement and can be linked to a decrease in VOC: The Ph4-bodipy (not benzannulated) device has an efficiency of 1.2% with an EQE reaching up to 800nm and a VOC of almost 1V. The Ph2-benz-bodipy device shows a Voc of 0.65V and an efficiency of 1.1%, the EQE reaching up to 860nm. The variation of the molecule’s end groups to vary their IP is successfully employed for three different benz-bodipys: The variation results in a decrease of the optical gap from 1.5eV for the phenyl group, to 1.4eV for the MeO group, and 1.3eV for the thiophene group with the effective gap and the VOC following this trend. Efficiencies of 1.1% and 0.6% in combination with C60 can be reached in mip-type devices. Ph2-benz-bodipy is then optimized into a single cell with an efficiency of 2.9%. In a tandem cell with DCV6T-Bu4:C60, a Voc of 1.7V, a FF of 57% and an efficiency of 5% is reached
Die Erweiterung des verfügbaren Spektrums in den Infrarotbereich ist eine Möglichkeit, die Effizienz organischer Solarzellen zu erhöhen. Diese Arbeit erkundet das Potential dieser Heteroübergänge und zwei Materialklassen in dünnen Schichten und Bauelementen: Zinnphthalozyanine (SnPc) und aza-Bodipys. Um die potentielle Effizienz abzuschäötzen, werden Modellberechnungen für Einzel- und Tandemzellen durchgeführt, unter Berücksichtigung des Unterschieds von optischer und elektrischer Bandlücke und der Quasiferminiveauaufspaltung. Mithilfe einiger Annahmen (z.B. Füllfaktor (FF) und externe Quanteneffizienz (EQE) gleich 65%) lässt sich die Einzelzelleffizienz auf 15%, die Tandemzelleffizienz auf 21% abschätzen. Halogenierung kann die Energieniveaus organischer Moleküle herabsetzen, ohne die optische Bandlücke zu verändern. Drei verschiedene chlorierte und fluorierte SnPcs werden mit dem reinen SnPc verglichen. Während die Chlorierung die Transporteigenschaften der aktiven Schicht und den FF verschlechtern, erhöht die Fluorierung wie erwartet Leerlaufspannung (VOC) und Effizienz im flachen Übergang, nicht jedoch in der Mischschicht, vermutlich aufgrund des nicht stabil gebundenen Fluors. Ein Weg, Ionisationspotential (IP) und Absorption der aza-Bodipy zu verändern, ist die Anelierung des Benzenrings. Die durch CV und UPS ermittelten und mittels DFT errechneten Energieniveaus stimmen gut überein und führen zu einer Verringerung der VOC: Die Zelle mit nichtaniliertem Ph4-bodipy zeigt eine Effizienz von 1.2%; das EQE reicht bis 800nm, die VOC beträgt fast 1V. Die Ph2-benz-bodipy-Zelle zeigt eine VOC von 0.65V und eine Effizienz von 1.1%, das EQE reicht bis 860nm. Der Austausch der Endgruppen zur Vergrößerung des IP, erfolgreich angewandt auf drei Benz-Bodipy-Verbindungen, führt zu einer Verringerung der optischen Bandlücke: von 1.5eV (Phenyl) über 1.4eV (MeO) zu 1.3eV (Thiophen); effektive Bandlücke und Voc folgen diesem Trend. Effizienzen von 1.1% und 0.6% in Kombination mit C60 werden in mip-Zellen erreicht. Ph2-benz-bodipy zeigt in einer optimierten nip-Zelle sogar eine Effizienz von 2.9%. Eine Tandemzelle mit DCV6T-Bu4:C60 zeigt eine Voc von 1.7V, einen FF von 57% und eine Effizienz von 5%
APA, Harvard, Vancouver, ISO, and other styles
6

Schulze, Kerstin. "Untersuchungen an Quinquethiophenen zur Verwendung als Donator in Organischen Solarzellen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224676272024-23808.

Full text
Abstract:
Organische Photovoltaik könnte zukünftig eine Möglichkeit zur Energiegewinnung aus erneuerbaren Energiequellen darstellen. Der Vorteil besteht hier vor allen Dingen in dem Potential einer sehr kostengünstigen Herstellung, zum Beispiel einer Produktion im Rolle-zu-Rolle-Verfahren, welche so auf flexiblen Substraten wie beispielsweise Folien erfolgen kann. Obwohl die Materialkosten gering sind, ist bis zu einer Kommerzialisierung Organischer Solarzellen unter anderem eine Erhöhung ihrer Leistungseffizienz notwendig. Vorzugsweise sollten in Organischen Solarzellen Donator- und Akzeptormaterialien verwendet werden, deren Absorptionsspektren und Energieniveaus ideal aufeinander abgestimmt sind, da so zum Beispiel hohe Leerlaufspannungen erreicht werden können. Zusätzlich können hohe Absorptionskoeffizienten der Materialien über einen großen spektralen Bereich zu hohen Stromdichten in diesen photovoltaischen Bauelementen führen. In dieser Arbeit werden neuartige Quinquethiophene als Donatormaterial in Organischen Solarzellen untersucht, welche als Grundeinheit aus fünf Thiophenringen sowie Dicyanovinylendgruppen und Alkylseitenketten bestehen. Die untersuchten Materialien besitzen einen hohen Absorptionskoeffizienten und erreichten auf Grund des hohen Ionisationspotentials hohe Leerlaufspannungen in Organischen Solarzellen unter Verwendung des Fullerens C60 als Akzeptor. Gleichzeitig tritt eine effiziente Trennung der Exzitonen an der Akzeptor-Donator-Grenzfläche auf. Jedoch stellt das hohe Ionisationspotential der Quinquethiophene spezielle Anforderungen an die weitere Solarzellenstruktur. Innerhalb dieser Arbeit wird gezeigt, dass ein Unterschied von eingebauter Spannung und Leerlaufspannung die Form der Solarzellen-Kennlinie entscheidend beeinflusst und eine S-Form in der Nähe der Leerlaufspannung erzeugen kann. Die eingebaute Spannung wird hierbei durch die Kontaktierung der photoaktiven Schichten bestimmt. Eine Erhöhung der eingebauten Spannung der Solarzelle kann durch eine entsprechende Materialwahl erreicht werden. So wird in dieser Arbeit gezeigt, dass Organische Solarzellen basierend auf diesen Quinquethiophenen ohne energetische Barrieren für freie Ladungsträger innerhalb des Bauelements keine S-Form der Kennlinie aufweisen. Ebenfalls wird der Einfluss der unterschiedlichen Quinquethiophenderivate auf die Solarzellen-Charakteristik untersucht. Hierbei wird gezeigt, dass die Länge der Alkylseitenketten einen Einfluss auf die Löcherinjektion sowie die Löcherbeweglichkeit auf dem Oligothiophen hat, welches unter anderem auch die Form der Strom-Spannungs-Kennlinie beeinflusst. Abschließend wird die Möglichkeit der Verwendung dieser Materialklasse in Tandemsolarzellen gezeigt sowie der Vergleich von zwei unterschiedlichen Anodenmaterialien, beides wichtige Aspekte für eine kommerzielle Umsetzung.
APA, Harvard, Vancouver, ISO, and other styles
7

Schüppel, Rico. "Photoinduzierte Absorptionsspektroskopie an organischen, photovoltaisch aktiven Donor-Akzeptor-Heteroübergängen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1208182765602-20532.

Full text
Abstract:
In organischen Solarzellen resultiert die photovoltaische Aktivität aus dem das Sonnenlicht absorbierenden Donor-Akzeptor-Heteroübergang. Die Grenzfläche zwischen den beiden organischen Materialien dient der effizienten Ladungsträgertrennung. Die vorliegende Arbeit leistet einen Beitrag im Verständnis zum Wirkungsmechanismus und der zu optimierenden Parameter in diesen Solarzellen. In Bezug auf die Anpassung des Donor-Akzeptor-Heteroübergangs wird neben dem Mechanismus der Ladungsträgergeneration an der Grenzfläche die erzielbare Leerlaufspannung in den Solarzellen diskutiert. Ein wesentliches Kriterium zur Erhöhung der Leerlaufspannung ist die Anpassung der Energieniveaus am Heteroübergang. Eine effiziente Ladungsträgertrennung wird durch eine hinreichende Stufe im Ionisationspotenzial sowie in der Elektronenaffinität am Heteroübergang erreicht. Zur Maximierung der Leerlaufspannung muss diese Überschussenergie, d.h. die Energiedifferenz zwischen photogeneriertem Exziton und freiem Ladungsträgerpaar, auf das notwendige Minimum reduziert werden. Eine Reihe von Dicyanovinyl-Oligothiophenen (DCVnT, n=3-6) wurden als Donor im Heteroübergang zu Fulleren C60 verwendet. Das Ionisationspotenzial der DCVnT nimmt mit zunehmender Kettenlänge ab, während die Elektronenaffinität, die weitestgehend durch die Dicyanovinyl-Endgruppen bestimmt wird, von der Kettenlänge nahezu unabhängig ist. Mittels photoinduzierter Absorptionsspektroskopie und zeitaufgelöster Fluoreszenzmessung wurde der Energie- und Elektronentransfer zwischen DCVnT und C60 entlang der homologen Reihe der DCVnT untersucht. Eine wesentliche Feststellung ist die Korrelation zwischen Rekombination in den Triplettzustand und der Leerlaufspannung. So konnte unter anderem gezeigt werden, dass durch die Verwendung angepasster Heteroübergänge unter bestimmten energetischen Voraussetzungen die indirekte Triplettbesetzung einen bislang nicht beachteten Verlustmechanismus für organische Solarzellen darstellt. Für organische Solarzellen ist demnach ein Kompromiss zwischen möglichst hoher Leerlaufspannung und effizienter Ladungsträgerdissoziation unter Vermeidung dieser Triplettrekombination zu erzielen. Weiterhin wird ein Konzept zur Nutzung dieser indirekten Triplettrekombination diskutiert. Dieses basiert auf der Tatsache, dass die Lebensdauer der Exzitonen im Triplettzustand gegenüber denen im Singulettzustand um 3-6 Größenordnungen höher ist. Damit wird eine höhere Diffusionslänge erwartet, was in einer dickeren und damit stärker absorbierenden aktiven Schicht genutzt werden könnte.
APA, Harvard, Vancouver, ISO, and other styles
8

Schüppel, Rico. "Photoinduzierte Absorptionsspektroskopie an organischen, photovoltaisch aktiven Donor-Akzeptor-Heteroübergängen." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A24126.

Full text
Abstract:
In organischen Solarzellen resultiert die photovoltaische Aktivität aus dem das Sonnenlicht absorbierenden Donor-Akzeptor-Heteroübergang. Die Grenzfläche zwischen den beiden organischen Materialien dient der effizienten Ladungsträgertrennung. Die vorliegende Arbeit leistet einen Beitrag im Verständnis zum Wirkungsmechanismus und der zu optimierenden Parameter in diesen Solarzellen. In Bezug auf die Anpassung des Donor-Akzeptor-Heteroübergangs wird neben dem Mechanismus der Ladungsträgergeneration an der Grenzfläche die erzielbare Leerlaufspannung in den Solarzellen diskutiert. Ein wesentliches Kriterium zur Erhöhung der Leerlaufspannung ist die Anpassung der Energieniveaus am Heteroübergang. Eine effiziente Ladungsträgertrennung wird durch eine hinreichende Stufe im Ionisationspotenzial sowie in der Elektronenaffinität am Heteroübergang erreicht. Zur Maximierung der Leerlaufspannung muss diese Überschussenergie, d.h. die Energiedifferenz zwischen photogeneriertem Exziton und freiem Ladungsträgerpaar, auf das notwendige Minimum reduziert werden. Eine Reihe von Dicyanovinyl-Oligothiophenen (DCVnT, n=3-6) wurden als Donor im Heteroübergang zu Fulleren C60 verwendet. Das Ionisationspotenzial der DCVnT nimmt mit zunehmender Kettenlänge ab, während die Elektronenaffinität, die weitestgehend durch die Dicyanovinyl-Endgruppen bestimmt wird, von der Kettenlänge nahezu unabhängig ist. Mittels photoinduzierter Absorptionsspektroskopie und zeitaufgelöster Fluoreszenzmessung wurde der Energie- und Elektronentransfer zwischen DCVnT und C60 entlang der homologen Reihe der DCVnT untersucht. Eine wesentliche Feststellung ist die Korrelation zwischen Rekombination in den Triplettzustand und der Leerlaufspannung. So konnte unter anderem gezeigt werden, dass durch die Verwendung angepasster Heteroübergänge unter bestimmten energetischen Voraussetzungen die indirekte Triplettbesetzung einen bislang nicht beachteten Verlustmechanismus für organische Solarzellen darstellt. Für organische Solarzellen ist demnach ein Kompromiss zwischen möglichst hoher Leerlaufspannung und effizienter Ladungsträgerdissoziation unter Vermeidung dieser Triplettrekombination zu erzielen. Weiterhin wird ein Konzept zur Nutzung dieser indirekten Triplettrekombination diskutiert. Dieses basiert auf der Tatsache, dass die Lebensdauer der Exzitonen im Triplettzustand gegenüber denen im Singulettzustand um 3-6 Größenordnungen höher ist. Damit wird eine höhere Diffusionslänge erwartet, was in einer dickeren und damit stärker absorbierenden aktiven Schicht genutzt werden könnte.
APA, Harvard, Vancouver, ISO, and other styles
9

Schäfer, Philipp. "Spectroscopic Characterization of DC Pulsed Sputtered Amorphous Silicon." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-165157.

Full text
Abstract:
Im Rahmen dieser Arbeit werden Schichten und Schichtsyteme untersucht, die mittels D.C. gepulstem Magnetronzerstäuben abgeschieden wurden. Die Untersuchungen der Schichten erfolgen unter dem Gesichtspunkt der Eignung dieser Schichten als Kontaktschichten für photovoltaische Anwendungen. Eine detaillierte Studie der Schichteigenschaften wurde mit Hilfe von optischen Spektroskopiemethoden sowie elektrischen Messungen erstellt. Diese stellt die Zusammenhänge der Abscheideparameter, insbesondere der Substrattemperatur und der Wasserstoffflussrate bei der Abscheidung mit den Schichteigenschaften her. Des Weiteren werden die wechselseitigen Abhängigkeiten der Schichteigenschaften dargelegt. Hierbei wurde unter anderem gezeigt, dass der allgemein in der Literatur akzeptierte lineare Zusammenhang zwischen der Tauc-Lorentz Bandlücke und dem Wasserstoffgehalt nicht für alle Proben bestätigt werden konnte. Stattdessen wurde die Abhängigkeit der Bandlücke im Wesentlichen dem Anteil der polyhydrierten Siliziumatome innerhalb der Schicht zugeordnet. Für Teilmengen der Proben ergibt sich hieraus wieder eine nahezu lineare Abhängigkeit zwischen dem Wasserstoffgehalt und der Bandlücke. Im zweiten Teil der Arbeit werden Heterostruktur-Dioden untersucht, die sich an der Grenzfläche zwischen amorphem und kristallinem Silizium ausbilden. Dabei werden vordergründig die elektrischen Eigenschaften untersucht. Dies umfasst die Untersuchung der Abscheideparameter auf grenzflächennahe Defektzustände, die mittels Ladungstransientenspektroskopie (QTS) gefunden wurden. Zudem wird der begünstigende Einfluss des kristallinen Siliziumsubstrats auf die Ausbildung von mikrokristallinen Strukturen der aufwachsenden Schichten mittels ramanspektroskopischen Untersuchungen dargelegt.
APA, Harvard, Vancouver, ISO, and other styles
10

Nobis, Frank. "Charakterisierung von a-Si:H/c-Si-Heterokontakten und dünnen Schichten aus hydrogenisiertem amorphem Silizium, hergestellt mittels gepulstem DC-Magnetronsputtern." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-127840.

Full text
Abstract:
Dünne Schichten aus hydrogenisiertem amorphem Silizium a-Si:H spielen für die Photovoltaik eine wichtige Rolle. Einerseits kommt für die Dünnschicht-Photovoltaik unterschiedlich dotiertes a-Si:H in den Schichten einer p-i-n-Solarzelle zur Anwendung, andererseits stellen Heterokontakt-Solarzellen aus amorphem und kristallinem Silizium (a-Si:H/c-Si) wegen ihres hohen Wirkungsgrades derzeit ein sehr aktuelles Forschungsthema dar. Die Abscheidung der a-Si:H-Schichten im Rahmen dieser Arbeit erfolgt mit der Methode des Magnetronsputterns (Kathodenzerstäubung). Dieses für die in-line-Beschichtung etablierte Verfahren wird speziell für die Photovoltaik noch nicht in industriellem Maßstab eingesetzt (lediglich für transparente leitfähige Oxide TCO). Insbesondere existiert nur eine geringe Zahl von Veröffentlichungen zu Heterokontakten, welche mittels Magnetronsputtern hergestellt wurden. Ein Schwerpunkt der vorliegenden Arbeit ist daher die Herstellung sowie Charakterisierung solcher Heterokontakte unter dem Aspekt variierter Abscheide- und Prozessparameter (Substrattemperatur, Wasserstoffflussrate, Ionenbeschuss). Das für das Sputtern erforderliche Plasma wird mit einer im Mittelfrequenzbereich gepulsten Gleichspannung angeregt. Ein dadurch mehr oder weniger ausgeprägter Ionenbeschuss der wachsenden Schichten in Abhängigkeit der Pulsparameter wird hier analysiert. Die Charakterisierung der Heterokontakte erfolgt hauptsächlich anhand deren Strom-Spannung-Kennlinien, welche auch bei variierter Temperatur gemessen werden. Erzielte Gleichrichtungsverhältnisse um 10000:1 sowie Diodenidealitätsfaktoren η ≈ 1,3 kennzeichnen (p)a-Si:H/(n)c-Si-Heterokontakte mit den besten halbleiterphysikalischen Eigenschaften. Bei zu schwacher Schichthydrogenisierung wurde ein Ladungstransportmechanismus nachgewiesen, welcher in der Literatur als multi-tunneling capture-emission MTCE bekannt ist. Eine erhöhte Hydrogenisierung unterdrückt diesen Mechanismus nahezu vollständig. Durch Abscheidung unterschiedlich stark bordotierter a-Si:H-Schichten wird außerdem die Dotiereffizienz beurteilt. Hohe Werte sind bei amorphen Halbleitern im Allgemeinen schwer zu erreichen. Die mit stärkerer Dotierung erhöhte Gleichrichterwirkung lieferte hier ein Indiz für eine nachweisbare Dotiereffizienz.
APA, Harvard, Vancouver, ISO, and other styles
11

Eck, Michael [Verfasser], and Michael [Akademischer Betreuer] Krüger. "Performance enhancement of hybrid nanocrystal-polymer bulk heterojunction solar cells : : aspects of device efficiency, reproducibility, and stability = Verbesserung der Leistung von hybriden Nanokristall-Polymer Heteroübergangs-Solarzellen : Aspekte der Solarzellen-Effizienz, -Reproduzierbarkeit und -Stabilität." Freiburg : Universität, 2014. http://d-nb.info/1123481768/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kniprath, Rolf. "Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15853.

Full text
Abstract:
Organische Solarzellen bieten die Aussicht auf eine ökologische und zugleich ökonomische Energiequelle. Nachteile des Konzepts liegen in der z.T. geringen Stabilität der für Absorption und Ladungstransport verwendeten Moleküle und einer unvollständigen Ausnutzung des Sonnenspektrums. Zur Verbesserung beider Merkmale werden in dieser Arbeit einzelne organische Bestandteile durch anorganische Materialien mit hoher Stabilität und breiten Absorptionsbanden ersetzt. Insbesondere werden als Absorber kolloidale Quantenpunkte (QP) verwendet, denen aufgrund nicht-linearer und durch Größeneffekte steuerbarer optischer Eigenschaften in der Photovoltaik der dritten Generation großes Interesse gilt. Dazu werden dünne anorganisch-organische Filme mit einem Verfahren hergestellt, das auf Wechselwirkungen zwischen Partikeln in Lösung und geladenen Oberflächen beruht (electrostatic layer-by-layer self-assembly). TiO2-Nanokristalle als Elektronenleiter, kolloidale CdTe- und CdSe-QP als Absorber und konjugierte Polymere als Lochleiter werden in die Filme integriert und diese als aktive Schichten in photovoltaischen Zellen verwendet. Die Struktur der Filme wird zunächst mittels AFM, SEM, XPS sowie durch eine Beladung mit organischen Farbstoffen untersucht. Sie weisen Porosität auf einer Skala von Nanometern sowie eine kontrollierbare Dicke und Mikrostruktur auf. Darauf aufbauend werden durch weitere lösungsbasierte Prozessschritte photovoltaische Zellen gefertigt und Zusammenhänge zwischen Struktur und Zellenleistung elektronisch und spektroskopisch untersucht. Einflussfaktoren der Zelleffizienz wie die Ladungsträgererzeugung und interne Widerstände können so bestimmt und die Effizienz von CdSe-QP als Sensibilisatoren nachgewiesen werden. Die Arbeit demonstriert die Eignung der gewählten Methoden und Zelldesigns zur Herstellung von photovoltaischen Zellen und eröffnet neue Ansätze für die Entwicklung und Fertigung insbesondere auf QP basierender Zellen.
Organic solar cells offer the prospect of a both ecological and economical energy source. Drawbacks of the concept are low stabilities of the molecules used for absorption and charge transport and an incomplete utilization of the solar spectrum. In order to improve both these characteristics, individual organic components are replaced by inorganic materials with a high stability and broad absorption bands in this work. In particular, colloidal quantum dots (QDs) are used as absorbers, the non-linear and size controllable optical properties of which are attracting great interest in third generation photovoltaics. For this application, inorganic/organic thin films are produced with a method based on interactions between particles in solution and charged surfaces (electrostatic layer-by-layer self-assembly). TiO2-nanocrystals as electron conductors, colloidal CdTe- and CdSe-QDs as absorbers and conjugated polymers as hole conductors are integrated into the films, which are used as active layers in photovoltaic cells. The structure of the films is investigated by AFM, SEM, XPS and by loading the films with organic dye molecules. The films show porosity on a nanometer scale as well as a controllable thickness and microstructure. Complemented by further solution based processing steps, photovoltaic cells are manufactured and correlations between the structure and performance of the cells are investigated both electronically and spectroscopically. Individual factors that determine the cell efficiency, such as carrier generation and internal resistances, are determined and the efficiency of CdSe-QDs as sensitizers is demonstrated. This work proves the suitability of the chosen methods and cell designs for manufacturing photovoltaic cells and opens up new approaches for the development and manufacture of in particular QD-based solar cells.
APA, Harvard, Vancouver, ISO, and other styles
13

Widmer, Johannes. "Charge transport and energy levels in organic semiconductors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.

Full text
Abstract:
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices
Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
APA, Harvard, Vancouver, ISO, and other styles
14

Pazirandeh, Reza [Verfasser]. "Zuverlässigkeitsuntersuchung von GaAs Heteroübergang-Bipolartransistoren / vorgelegt von Reza Pazirandeh." 2010. http://d-nb.info/1003700489/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Glatzel, Thilo [Verfasser]. "Kelvinsondenkraftmikroskopie am Heteroübergang (Zn,Mg)O/Cu(In,Ga)(S,Se)2 - Chalkopyrit / von Thilo Glatzel." 2004. http://d-nb.info/970369573/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Karsthof, Robert. "NiO/ZnO-Heteroübergänge: Charakterisierung des elektrischen Transports und Realisierung transparenter aktiver Bauelemente." 2017. https://ul.qucosa.de/id/qucosa%3A21075.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit auf Nickeloxid (NiO) und Zinkoxid (ZnO) basierenden Halbleiterheterostrukturen. Beide Materialsysteme sind weitbandlückige und damit im sichtbaren Spektralbereich transparente Halbleiter. Da NiO vom p- und ZnO vom n-Leitungstyp ist, ist mit dieser Kombination die Herstellung optisch transparenter und gleichrichtender pn-Kontakte möglich. Die Realisierung solcher Kontakte ist Schwerpunkt dieser Arbeit. Darauf aufbauend wird gezeigt, dass der NiO/ZnO-Heterokontakt Anwendungspotential im Bereich der Photovoltaik besitzt, und zwar als UV-aktive, transparente Solarzelle, die über die Absorption von ultraviolettem Licht elektrische Leistung bereitstellt.Weiterhin werden auf NiO/ZnO-Kontakten basierende Sperrschicht-Feldeffekttransistoren (junction field-effect transistors, JFET) hergestellt und charakterisiert. Die Ergebnisse zeigen, dass die Bauteile von technischer Relevanz in Schaltungen der transparenten Elektronik sein können. Der NiO/ZnO-Halbleiterkontakt weist bekanntermaßen große Versetzungen der Leitungs- und Valenzbandkanten an der Grenzfläche auf, welche Barrieren für die Injektion von Minoritätsladungsträgern darstellen. Ein Stromfluss durch eine solche Typ-II-Heterostruktur ist nur durch Elektron-Loch-Rekombination über Grenzflächenzustände möglich. Es werden Modelle diskutiert, die zur Beschreibung der Strom-Spannungscharakteristik unter Berücksichtigung dieses Transportmechanismus verwendet werden können. Die Herstellung der ZnO-Dünnfilme erfolgte mit der etablierten Methode der gepulsten Laserabscheidung (pulsed laser deposition, PLD). Zur Beschichtung mit NiO wird neben der PLD die Kathodenzerstäubung als zweite Methode verwendet. Die Besprechung der Ergebnisse beginnt mit der Analyse der NiO-Dünnschichten und endet mit den aktiven Bauelementen. Zuerst werden die strukturellen, optischen und elektrischen Eigenschaften von NiO-Dünnfilmen hinsichtlich der Abhängigkeit von den Wachstumsbedingungen für beide Methoden besprochen. Anschließend folgt die elektrische Charakterisierung von NiO/ZnODioden, auf deren Basis Transportmechanismen in diesen Strukturen diskutiert werden. Die letzten beiden Kapitel sind den im Rahmen dieser Arbeit erfolgreich hergestellten aktiven Bauelementen – UV-aktiven Solarzellen sowie JFET – gewidmet, die den NiO/ZnO-Heteroübergang zur Realisierung ihrer Funktionalität ausnutzen. Hierbei wurden mittels PLD abgeschiedene NiODünnfilme als Solarzellen-Frontkontakte beziehungsweise als Transistor-Steuerelektrode eingesetzt. Bezüglich der UV-Solarzellen erfolgt eine tiefgehende Analyse der auftretenden elektrischen Verlustmechanismen. Die Charakterisierung der JFET fokussiert auf das statische und dynamische Schaltverhalten sowie die Temperaturstabilität der Bauelemente.
APA, Harvard, Vancouver, ISO, and other styles
17

Schäfer, Philipp. "Spectroscopic Characterization of DC Pulsed Sputtered Amorphous Silicon." Doctoral thesis, 2012. https://monarch.qucosa.de/id/qucosa%3A20231.

Full text
Abstract:
Im Rahmen dieser Arbeit werden Schichten und Schichtsyteme untersucht, die mittels D.C. gepulstem Magnetronzerstäuben abgeschieden wurden. Die Untersuchungen der Schichten erfolgen unter dem Gesichtspunkt der Eignung dieser Schichten als Kontaktschichten für photovoltaische Anwendungen. Eine detaillierte Studie der Schichteigenschaften wurde mit Hilfe von optischen Spektroskopiemethoden sowie elektrischen Messungen erstellt. Diese stellt die Zusammenhänge der Abscheideparameter, insbesondere der Substrattemperatur und der Wasserstoffflussrate bei der Abscheidung mit den Schichteigenschaften her. Des Weiteren werden die wechselseitigen Abhängigkeiten der Schichteigenschaften dargelegt. Hierbei wurde unter anderem gezeigt, dass der allgemein in der Literatur akzeptierte lineare Zusammenhang zwischen der Tauc-Lorentz Bandlücke und dem Wasserstoffgehalt nicht für alle Proben bestätigt werden konnte. Stattdessen wurde die Abhängigkeit der Bandlücke im Wesentlichen dem Anteil der polyhydrierten Siliziumatome innerhalb der Schicht zugeordnet. Für Teilmengen der Proben ergibt sich hieraus wieder eine nahezu lineare Abhängigkeit zwischen dem Wasserstoffgehalt und der Bandlücke. Im zweiten Teil der Arbeit werden Heterostruktur-Dioden untersucht, die sich an der Grenzfläche zwischen amorphem und kristallinem Silizium ausbilden. Dabei werden vordergründig die elektrischen Eigenschaften untersucht. Dies umfasst die Untersuchung der Abscheideparameter auf grenzflächennahe Defektzustände, die mittels Ladungstransientenspektroskopie (QTS) gefunden wurden. Zudem wird der begünstigende Einfluss des kristallinen Siliziumsubstrats auf die Ausbildung von mikrokristallinen Strukturen der aufwachsenden Schichten mittels ramanspektroskopischen Untersuchungen dargelegt.
APA, Harvard, Vancouver, ISO, and other styles
18

Widmer, Johannes. "Charge transport and energy levels in organic semiconductors." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28350.

Full text
Abstract:
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers
Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography