Journal articles on the topic 'Heterovalent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Heterovalent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yao, T., F. Lu, M. W. Cho, K. W. Koh, Z. Zhu, L. H. Kuo, T. Yasuda, et al. "Heterovalent ZnSe/GaAs Interfaces." physica status solidi (b) 202, no. 2 (August 1997): 657–68. http://dx.doi.org/10.1002/1521-3951(199708)202:2<657::aid-pssb657>3.0.co;2-4.
Full textBennett, M. A., S. K. Bhargava, F. Mohr, L. L. Welling, and A. C. Willis. "Synthesis and X-Ray Structure of a Heterovalent, Cycloaurated Pentafluorophenylgold(I)/Pentafluorophenylgold(III) Complex." Australian Journal of Chemistry 55, no. 4 (2002): 267. http://dx.doi.org/10.1071/ch02034.
Full textКостишин, В. Г., В. В. Коровушкин, К. В. Похолок, А. В. Труханов, И. М. Исаев, А. Ю. Миронович, and М. А. Дарвиш. "Особенности катионного распределения и магнитных свойств поликристаллических гексагональных ферритов BaFe-=SUB=-12-x-=/SUB=-Sn-=SUB=-x-=/SUB=-O-=SUB=-19-=/SUB=-." Физика твердого тела 63, no. 10 (2021): 1496. http://dx.doi.org/10.21883/ftt.2021.10.51396.126.
Full textvan Veldhuizen, M., J. A. Hendriks, and C. A. J. Appelo. "Numerical computation in heterovalent chromatography." Applied Numerical Mathematics 28, no. 1 (September 1998): 69–89. http://dx.doi.org/10.1016/s0168-9274(98)00016-6.
Full textLi, D., Y. Nakamura, N. Otsuka, J. Qiu, M. Kobayashi, and R. L. Gunshor. "Vacancy ordering at heterovalent interfaces." Surface Science 267, no. 1-3 (January 1992): 181–86. http://dx.doi.org/10.1016/0039-6028(92)91116-s.
Full textLyu, Feiyi, Xiaoqi Zheng, Yingqiao Wang, Ruowen Shi, Jianli Yang, Ziyue Li, Jiase Yu, and Bo-Lin Lin. "Bi3+ doped 2D Ruddlesden–Popper organic lead halide perovskites." Journal of Materials Chemistry A 7, no. 26 (2019): 15627–32. http://dx.doi.org/10.1039/c9ta04145a.
Full textFlorea, Mihaela, Daniel Avram, Bogdan Cojocaru, Ion Tiseanu, Vasile Parvulescu, and Carmen Tiseanu. "Defect induced tunable near infrared emission of Er–CeO2 by heterovalent co-dopants." Physical Chemistry Chemical Physics 18, no. 27 (2016): 18268–77. http://dx.doi.org/10.1039/c6cp02754g.
Full textLi, Ya-Nan, Zi-Xia Chen, Wen-Dong Yao, Ru-Ling Tang, and Sheng-Ping Guo. "Heterovalent cations substitution to design asymmetric chalcogenides with promising nonlinear optical performances." Journal of Materials Chemistry C 9, no. 27 (2021): 8659–65. http://dx.doi.org/10.1039/d1tc01806j.
Full textMiao, Xiaoliang, Ting Qiu, Shufang Zhang, He Ma, Yanqiang Hu, Fan Bai, and Zhuangchun Wu. "Air-stable CsPb1−xBixBr3 (0 ≤ x ≪ 1) perovskite crystals: optoelectronic and photostriction properties." Journal of Materials Chemistry C 5, no. 20 (2017): 4931–39. http://dx.doi.org/10.1039/c7tc00417f.
Full textTaniguchi, Hiroki, Tomohiro Nakane, Takayuki Nagai, Chikako Moriyoshi, Yoshihiro Kuroiwa, Akihide Kuwabara, Masaichiro Mizumaki, Kiyofumi Nitta, Ryuji Okazaki, and Ichiro Terasaki. "Heterovalent Pb-substitution in ferroelectric bismuth silicate Bi2SiO5." Journal of Materials Chemistry C 4, no. 15 (2016): 3168–74. http://dx.doi.org/10.1039/c6tc00584e.
Full textBhunia, Hrishikesh, Biswajit Kundu, Soumyo Chatterjee, and Amlan J. Pal. "Heterovalent substitution in anionic and cationic positions of PbS thin-films grown by SILAR method vis-à-vis Fermi energy measured through scanning tunneling spectroscopy." Journal of Materials Chemistry C 4, no. 3 (2016): 551–58. http://dx.doi.org/10.1039/c5tc03959b.
Full textOhno, Takahisa, and Tomonori Ito. "Electronic structure and stability of heterovalent superlattices." Physical Review B 47, no. 24 (June 15, 1993): 16336–42. http://dx.doi.org/10.1103/physrevb.47.16336.
Full textQiu, J., D. R. Menke, M. Kobayashi, R. L. Gunshor, D. Li, Y. Nakamura, and N. Otsuka. "Characterization of Ga2Se3at ZnSe/GaAs heterovalent interfaces." Applied Physics Letters 58, no. 24 (June 17, 1991): 2788–90. http://dx.doi.org/10.1063/1.104762.
Full textAleksandrov, S. M., and M. A. Troneva. "Heterovalent isomorphism in the magnesium-iron borates." Geochemistry International 46, no. 8 (August 2008): 800–813. http://dx.doi.org/10.1134/s0016702908080053.
Full textLu, F. "Interfacial properties of ZnSe/GaAs heterovalent interfaces." Journal of Crystal Growth 184-185, no. 1-2 (February 1998): 183–87. http://dx.doi.org/10.1016/s0022-0248(97)00754-9.
Full textLu, F., K. Kimura, S. Q. Wang, Z. Q. Zhu, and T. Yao. "Interfacial properties of ZnSe/GaAs heterovalent interfaces." Journal of Crystal Growth 184-185 (February 1998): 183–87. http://dx.doi.org/10.1016/s0022-0248(98)80318-7.
Full textZi, J., and W. Ludwig. "Phonons in VI/III-V heterovalent superlattices." Journal of Physics: Condensed Matter 6, no. 18 (May 2, 1994): 3291–300. http://dx.doi.org/10.1088/0953-8984/6/18/005.
Full textNakayama, Takashi. "Electronic structures of zinc-compound heterovalent superlattices." Superlattices and Microstructures 12, no. 2 (January 1992): 211–13. http://dx.doi.org/10.1016/0749-6036(92)90339-7.
Full textBénière, F., and K. V. Reddy. "Diffusion of heterovalent ions in ionic crystals." Journal of Physics and Chemistry of Solids 47, no. 1 (January 1986): 69–77. http://dx.doi.org/10.1016/0022-3697(86)90179-4.
Full textBalasubramaniam, M., and S. Balakumar. "Nanostructuring of a one-dimensional zinc antimonate electrode material through a precipitation strategy for use in supercapacitors." New Journal of Chemistry 42, no. 9 (2018): 6613–16. http://dx.doi.org/10.1039/c8nj00196k.
Full textDu, Yachao, Qingwen Tian, Jin Huang, Yuechao Zhao, Xiaohuan Chang, Afei Zhang, and Sixin Wu. "Heterovalent Ga3+ doping in solution-processed Cu2ZnSn(S,Se)4 solar cells for better optoelectronic performance." Sustainable Energy & Fuels 4, no. 4 (2020): 1621–29. http://dx.doi.org/10.1039/c9se00705a.
Full textKroll, Herbert, Alexej R. Kotelnikov, Jörg Göttlicher, and Elena V. Valyashko. "(K,Sr)-feldspar solid solutions: the volume behaviour of heterovalent feldspars." European Journal of Mineralogy 7, no. 3 (May 19, 1995): 489–500. http://dx.doi.org/10.1127/ejm/7/3/0489.
Full textRani, Sonia, Gollapally Naresh, and Tapas Kumar Mandal. "Coupled-substituted double-layer Aurivillius niobates: structures, magnetism and solar photocatalysis." Dalton Transactions 49, no. 5 (2020): 1433–45. http://dx.doi.org/10.1039/c9dt04339j.
Full textLu, Yan-Na, Jun-Xing Zhong, Yinye Yu, Xi Chen, Chan-Ying Yao, Chengxi Zhang, Meifang Yang, et al. "Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics." Energy & Environmental Science 14, no. 7 (2021): 4048–58. http://dx.doi.org/10.1039/d1ee00918d.
Full textFunato, Mitsuru, Shizuo Fujita, and Shigeo Fujita. "Engineered interface properties in ZnSSe/GaAs heterovalent heterostructures." Journal of Crystal Growth 214-215 (June 2000): 590–94. http://dx.doi.org/10.1016/s0022-0248(00)00159-7.
Full textKlamut, P. W., B. Dabrowski, S. M. Mini, M. Maxwell, J. Mais, I. Felner, U. Asaf, et al. "On the effect of heterovalent substitutions in ruthenocuprates." Physica C: Superconductivity 387, no. 1-2 (May 2003): 33–39. http://dx.doi.org/10.1016/s0921-4534(03)00637-3.
Full textResta, R., A. Baldereschi [math], and S. Baroni. "Electronic properties of isovalent and heterovalent semiconductor interfaces." Journal de Chimie Physique 86 (1989): 789–98. http://dx.doi.org/10.1051/jcp/1989860789.
Full textSharma, P., T. Milakovich, M. T. Bulsara, and E. A. Fitzgerald. "Controlling Epitaxial GaAsxP1-x/Si1-yGey Heterovalent Interfaces." ECS Transactions 50, no. 9 (March 15, 2013): 333–37. http://dx.doi.org/10.1149/05009.0333ecst.
Full textToropov, A. A., I. V. Sedova, S. V. Sorokin, Ya V. Terent'ev, E. L. Ivchenko, D. N. Lykov, S. V. Ivanov, J. P. Bergman, and B. Monemar. "III–V/II–VI heterovalent double quantum wells." physica status solidi (b) 243, no. 4 (March 2006): 819–26. http://dx.doi.org/10.1002/pssb.200564763.
Full textSano, Kazuaki, and Takashi Nakayama. "Monte Carlo Simulation of ZnSe/GaAs Heterovalent Epitaxy." Japanese Journal of Applied Physics 39, Part 1, No. 7B (July 30, 2000): 4289–91. http://dx.doi.org/10.1143/jjap.39.4289.
Full textTⱥle, V., I. Tⱥleand, and L. L. Nagornaya. "Thermoactivated spectroscopy of heterovalent impurity traps in CdWO4." Radiation Effects and Defects in Solids 134, no. 1-4 (December 1995): 477–80. http://dx.doi.org/10.1080/10420159508227272.
Full textFunato, Mitsuru, Shizuo Fujita, and Shigeo Fujita. "Energy states in ZnSe-GaAs heterovalent quantum structures." Physical Review B 60, no. 24 (December 15, 1999): 16652–59. http://dx.doi.org/10.1103/physrevb.60.16652.
Full textGunshor, R. L., M. Kobayashi, N. Otsuka, and A. V. Nurmikko. "Properties of II–VI/III–V heterovalent interfaces." Journal of Crystal Growth 115, no. 1-4 (December 1991): 652–59. http://dx.doi.org/10.1016/0022-0248(91)90821-l.
Full textКоровушкин, В. В., А. В. Труханов, В. Г. Костишин, И. М. Исаев, И. В. Щетинин, Н. М. Дуров, А. Ю. Миронович, И. О. Минкова, and К. А. Астапович. "Исследование особенностей состава, магнитной и кристаллической структуры гексаферрита бария BaFe-=SUB=-12-x-=/SUB=-Ti-=SUB=-x-=/SUB=-O-=SUB=-19-=/SUB=-." Физика твердого тела 62, no. 5 (2020): 789. http://dx.doi.org/10.21883/ftt.2020.05.49250.622.
Full textChebyshev, K. A., A. V. Ignatov, L. V. Pasechnik, N. I. Selikova, and E. I. Get`man. "Investigation of the Heterovalent Substitution Cadmium for Lanthanum in Molybdate La2MoO6." Journal of Chemistry 2021 (May 27, 2021): 1–7. http://dx.doi.org/10.1155/2021/5537048.
Full textKorolyuk, V. N., and G. G. Lepezin. "The coefficients of heterovalent NaSi–CaAl interdiffusion in plagioclases." Russian Geology and Geophysics 50, no. 12 (December 2009): 1146–52. http://dx.doi.org/10.1016/j.rgg.2009.11.013.
Full textSCHMID-BEURMANN, P. "HETEROVALENT SUBSTITUTION IN IRON PHOSPHATES OF THE LAZULITE-TYPE." Phosphorus Research Bulletin 13 (2002): 209–14. http://dx.doi.org/10.3363/prb1992.13.0_209.
Full textWang, Xiaoyu, Nasir Ali, Gang Bi, Yao Wang, Qibin Shen, Arash Rahimi-Iman, and Huizhen Wu. "Lead-Free Antimony Halide Perovskite with Heterovalent Mn2+ Doping." Inorganic Chemistry 59, no. 20 (October 7, 2020): 15289–94. http://dx.doi.org/10.1021/acs.inorgchem.0c02252.
Full textKlyndyuk, A. I., and E. A. Chizhova. "Heterovalent cation substitutions in the layered compound YBaCuFeO5 + δ." Inorganic Materials 43, no. 8 (August 2007): 866–72. http://dx.doi.org/10.1134/s0020168507080092.
Full textBellaiche, L., J. Padilla, and David Vanderbilt. "Heterovalent andA-atom effects inA(B′B″)O3perovskite alloys." Physical Review B 59, no. 3 (January 15, 1999): 1834–39. http://dx.doi.org/10.1103/physrevb.59.1834.
Full textStädele, M., J. A. Majewski, and P. Vogl. "Stability and Band Offsets of Heterovalent SiC/GaN Interfaces." Acta Physica Polonica A 88, no. 5 (November 1995): 917–20. http://dx.doi.org/10.12693/aphyspola.88.917.
Full textLassise, Maxwell B., Peng Wang, Brian D. Tracy, Guopeng Chen, David J. Smith, and Yong-Hang Zhang. "Growth of II-VI/III-V heterovalent quantum structures." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36, no. 2 (March 2018): 02D110. http://dx.doi.org/10.1116/1.5017972.
Full textPifferi, Carlo, Baptiste Thomas, David Goyard, Nathalie Berthet, and Olivier Renaudet. "Heterovalent Glycodendrimers as Epitope Carriers for Antitumor Synthetic Vaccines." Chemistry – A European Journal 23, no. 64 (October 25, 2017): 16283–96. http://dx.doi.org/10.1002/chem.201702708.
Full textTung, Raymond T., and Leeor Kronik. "Charge Density and Band Offsets at Heterovalent Semiconductor Interfaces." Advanced Theory and Simulations 1, no. 1 (December 1, 2017): 1700001. http://dx.doi.org/10.1002/adts.201700001.
Full textPetrov, M. I., Yu S. Gokhfeld, D. A. Balaev, S. I. Popkov, A. A. Dubrovskiy, D. M. Gokhfeld, and K. A. Shaykhutdinov. "Pinning enhancement by heterovalent substitution in Y1−xRExBa2Cu3O7−δ." Superconductor Science and Technology 21, no. 8 (June 5, 2008): 085015. http://dx.doi.org/10.1088/0953-2048/21/8/085015.
Full textNicolini, R., L. Vanzetti, Guido Mula, G. Bratina, L. Sorba, A. Franciosi, M. Peressi, et al. "Local interface composition and band discontinuities in heterovalent heterostructures." Physical Review Letters 72, no. 2 (January 10, 1994): 294–97. http://dx.doi.org/10.1103/physrevlett.72.294.
Full textFunato, Mitsuru, Shizuo Fujita, and Shigeo Fujita. "MOVPE growth and characterization of ZnSe-GaAs heterovalent heterostructures." Bulletin of Materials Science 18, no. 4 (August 1995): 343–59. http://dx.doi.org/10.1007/bf02749766.
Full textBonoldi, L., G. L. Calestani, M. G. Francesconi, G. Salsi, M. Sparpaglione, and L. Zini. "Structural stability of bismuth-based superconductors under heterovalent substitution." Physica C: Superconductivity 241, no. 1-2 (January 1995): 37–44. http://dx.doi.org/10.1016/0921-4534(94)02364-6.
Full textQiu, J., D. R. Menke, M. Kobayashi, R. L. Gunshor, Q. D. Qian, D. Li, and N. Otsuka. "ZnSe/GaAs heterovalent interfaces: interface microstructure versus electrical properties." Journal of Crystal Growth 111, no. 1-4 (May 1991): 747–51. http://dx.doi.org/10.1016/0022-0248(91)91074-k.
Full textBezryadin, N. N., A. V. Budanov, E. A. Tatokhin, B. L. Agapov, and A. V. Linnik. "Preparation of In2Se3 layers on InAs by heterovalent substitution." Inorganic Materials 36, no. 9 (September 2000): 864–67. http://dx.doi.org/10.1007/bf02758692.
Full text