To see the other types of publications on this topic, follow the link: Heterovalent.

Journal articles on the topic 'Heterovalent'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Heterovalent.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yao, T., F. Lu, M. W. Cho, K. W. Koh, Z. Zhu, L. H. Kuo, T. Yasuda, et al. "Heterovalent ZnSe/GaAs Interfaces." physica status solidi (b) 202, no. 2 (August 1997): 657–68. http://dx.doi.org/10.1002/1521-3951(199708)202:2<657::aid-pssb657>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bennett, M. A., S. K. Bhargava, F. Mohr, L. L. Welling, and A. C. Willis. "Synthesis and X-Ray Structure of a Heterovalent, Cycloaurated Pentafluorophenylgold(I)/Pentafluorophenylgold(III) Complex." Australian Journal of Chemistry 55, no. 4 (2002): 267. http://dx.doi.org/10.1071/ch02034.

Full text
Abstract:
The heterovalent gold(I)/gold(III) complex [(C6F5)AuI(μ-2-Ph2PC6H3-6-Me)AuIII(C6F5){η2-(6-MeC6H3-2-PPh2)}] has been prepared and structurally characterized by X-ray crystallography. It shows square planar stereochemistry at AuIII incorporating a four-membered chelate ring and linear arrangement at AuI. The compound is a rare example of a heterovalent complex containing an aryl ligand on each gold atom.
APA, Harvard, Vancouver, ISO, and other styles
3

Костишин, В. Г., В. В. Коровушкин, К. В. Похолок, А. В. Труханов, И. М. Исаев, А. Ю. Миронович, and М. А. Дарвиш. "Особенности катионного распределения и магнитных свойств поликристаллических гексагональных ферритов BaFe-=SUB=-12-x-=/SUB=-Sn-=SUB=-x-=/SUB=-O-=SUB=-19-=/SUB=-." Физика твердого тела 63, no. 10 (2021): 1496. http://dx.doi.org/10.21883/ftt.2021.10.51396.126.

Full text
Abstract:
The cation distribution and magnetic properties of polycrystalline ВаFe12–xSnxO19 (х = 0.0, 0.1, 0.3, 0.6, 0.9 and 1.2) ferrites have been studied for the first time by Fe57 and Sn119 Mössbauer spectroscopy. It was shown that doping of BaFe12O19 with tin is performed with limited heterovalent isomorphism according to the scheme 2Fe3+Sn4+ + Fe2+. It was found that intense heterovalent isomorphic substitutions occur in the 12k site of the BaFe12-xSnxO19 hexaferrite in the range of 0.1 < x < 0.6; less significant substitutions observed in the 4f2 and 2a sites. It was established that the heterovalent isomorphic substitution of tin for iron in BaFe12- xSnxO19 is limited by the values of x in range х = 0.6–0.9 Measurements of the magnetic parameters of the obtained samples were performed. The possibility of practical application of the synthesized ferrites is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

van Veldhuizen, M., J. A. Hendriks, and C. A. J. Appelo. "Numerical computation in heterovalent chromatography." Applied Numerical Mathematics 28, no. 1 (September 1998): 69–89. http://dx.doi.org/10.1016/s0168-9274(98)00016-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, D., Y. Nakamura, N. Otsuka, J. Qiu, M. Kobayashi, and R. L. Gunshor. "Vacancy ordering at heterovalent interfaces." Surface Science 267, no. 1-3 (January 1992): 181–86. http://dx.doi.org/10.1016/0039-6028(92)91116-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lyu, Feiyi, Xiaoqi Zheng, Yingqiao Wang, Ruowen Shi, Jianli Yang, Ziyue Li, Jiase Yu, and Bo-Lin Lin. "Bi3+ doped 2D Ruddlesden–Popper organic lead halide perovskites." Journal of Materials Chemistry A 7, no. 26 (2019): 15627–32. http://dx.doi.org/10.1039/c9ta04145a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Florea, Mihaela, Daniel Avram, Bogdan Cojocaru, Ion Tiseanu, Vasile Parvulescu, and Carmen Tiseanu. "Defect induced tunable near infrared emission of Er–CeO2 by heterovalent co-dopants." Physical Chemistry Chemical Physics 18, no. 27 (2016): 18268–77. http://dx.doi.org/10.1039/c6cp02754g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Ya-Nan, Zi-Xia Chen, Wen-Dong Yao, Ru-Ling Tang, and Sheng-Ping Guo. "Heterovalent cations substitution to design asymmetric chalcogenides with promising nonlinear optical performances." Journal of Materials Chemistry C 9, no. 27 (2021): 8659–65. http://dx.doi.org/10.1039/d1tc01806j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miao, Xiaoliang, Ting Qiu, Shufang Zhang, He Ma, Yanqiang Hu, Fan Bai, and Zhuangchun Wu. "Air-stable CsPb1−xBixBr3 (0 ≤ x ≪ 1) perovskite crystals: optoelectronic and photostriction properties." Journal of Materials Chemistry C 5, no. 20 (2017): 4931–39. http://dx.doi.org/10.1039/c7tc00417f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taniguchi, Hiroki, Tomohiro Nakane, Takayuki Nagai, Chikako Moriyoshi, Yoshihiro Kuroiwa, Akihide Kuwabara, Masaichiro Mizumaki, Kiyofumi Nitta, Ryuji Okazaki, and Ichiro Terasaki. "Heterovalent Pb-substitution in ferroelectric bismuth silicate Bi2SiO5." Journal of Materials Chemistry C 4, no. 15 (2016): 3168–74. http://dx.doi.org/10.1039/c6tc00584e.

Full text
Abstract:
Systematic tuning of the ferroelectric phase transition in Bi2SiO5 was demonstrated using element substitution, where nominally heterovalent Pb was successfully substituted for Bi up to 20%.
APA, Harvard, Vancouver, ISO, and other styles
11

Bhunia, Hrishikesh, Biswajit Kundu, Soumyo Chatterjee, and Amlan J. Pal. "Heterovalent substitution in anionic and cationic positions of PbS thin-films grown by SILAR method vis-à-vis Fermi energy measured through scanning tunneling spectroscopy." Journal of Materials Chemistry C 4, no. 3 (2016): 551–58. http://dx.doi.org/10.1039/c5tc03959b.

Full text
Abstract:
Heterovalent element substitution at both ionic sites of PbS achieved during film formation. The dopants introduced free carriers in the semiconductor affecting the Fermi energy, which has been located by STS studies.
APA, Harvard, Vancouver, ISO, and other styles
12

Ohno, Takahisa, and Tomonori Ito. "Electronic structure and stability of heterovalent superlattices." Physical Review B 47, no. 24 (June 15, 1993): 16336–42. http://dx.doi.org/10.1103/physrevb.47.16336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Qiu, J., D. R. Menke, M. Kobayashi, R. L. Gunshor, D. Li, Y. Nakamura, and N. Otsuka. "Characterization of Ga2Se3at ZnSe/GaAs heterovalent interfaces." Applied Physics Letters 58, no. 24 (June 17, 1991): 2788–90. http://dx.doi.org/10.1063/1.104762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Aleksandrov, S. M., and M. A. Troneva. "Heterovalent isomorphism in the magnesium-iron borates." Geochemistry International 46, no. 8 (August 2008): 800–813. http://dx.doi.org/10.1134/s0016702908080053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, F. "Interfacial properties of ZnSe/GaAs heterovalent interfaces." Journal of Crystal Growth 184-185, no. 1-2 (February 1998): 183–87. http://dx.doi.org/10.1016/s0022-0248(97)00754-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lu, F., K. Kimura, S. Q. Wang, Z. Q. Zhu, and T. Yao. "Interfacial properties of ZnSe/GaAs heterovalent interfaces." Journal of Crystal Growth 184-185 (February 1998): 183–87. http://dx.doi.org/10.1016/s0022-0248(98)80318-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zi, J., and W. Ludwig. "Phonons in VI/III-V heterovalent superlattices." Journal of Physics: Condensed Matter 6, no. 18 (May 2, 1994): 3291–300. http://dx.doi.org/10.1088/0953-8984/6/18/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nakayama, Takashi. "Electronic structures of zinc-compound heterovalent superlattices." Superlattices and Microstructures 12, no. 2 (January 1992): 211–13. http://dx.doi.org/10.1016/0749-6036(92)90339-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bénière, F., and K. V. Reddy. "Diffusion of heterovalent ions in ionic crystals." Journal of Physics and Chemistry of Solids 47, no. 1 (January 1986): 69–77. http://dx.doi.org/10.1016/0022-3697(86)90179-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Balasubramaniam, M., and S. Balakumar. "Nanostructuring of a one-dimensional zinc antimonate electrode material through a precipitation strategy for use in supercapacitors." New Journal of Chemistry 42, no. 9 (2018): 6613–16. http://dx.doi.org/10.1039/c8nj00196k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Du, Yachao, Qingwen Tian, Jin Huang, Yuechao Zhao, Xiaohuan Chang, Afei Zhang, and Sixin Wu. "Heterovalent Ga3+ doping in solution-processed Cu2ZnSn(S,Se)4 solar cells for better optoelectronic performance." Sustainable Energy & Fuels 4, no. 4 (2020): 1621–29. http://dx.doi.org/10.1039/c9se00705a.

Full text
Abstract:
A sandwich-like configuration was constructed through the introduction of a heterovalent Ga3+ intermediate layer, which facilitates the improvement of the performance of Cu2ZnSn(S,Se)4 solar cells.
APA, Harvard, Vancouver, ISO, and other styles
22

Kroll, Herbert, Alexej R. Kotelnikov, Jörg Göttlicher, and Elena V. Valyashko. "(K,Sr)-feldspar solid solutions: the volume behaviour of heterovalent feldspars." European Journal of Mineralogy 7, no. 3 (May 19, 1995): 489–500. http://dx.doi.org/10.1127/ejm/7/3/0489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rani, Sonia, Gollapally Naresh, and Tapas Kumar Mandal. "Coupled-substituted double-layer Aurivillius niobates: structures, magnetism and solar photocatalysis." Dalton Transactions 49, no. 5 (2020): 1433–45. http://dx.doi.org/10.1039/c9dt04339j.

Full text
Abstract:
Heterovalent coupled-substituted double-layer Aurivillius niobates, LaBi2Nb1.5M0.5O9 (M = Cr, Mn, Fe, Co), show interesting structural and magnetic characteristics in addition to sunlight-driven photocatalytic activity.
APA, Harvard, Vancouver, ISO, and other styles
24

Lu, Yan-Na, Jun-Xing Zhong, Yinye Yu, Xi Chen, Chan-Ying Yao, Chengxi Zhang, Meifang Yang, et al. "Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics." Energy & Environmental Science 14, no. 7 (2021): 4048–58. http://dx.doi.org/10.1039/d1ee00918d.

Full text
Abstract:
A simple heterovalent metal halide surface treatment enables formation of n/n+ perovskite homojunction, which enlarged built-in electric field and accelerated charge extraction at the perovskite/C60 interface, achieving a high efficiency of 22.2%.
APA, Harvard, Vancouver, ISO, and other styles
25

Funato, Mitsuru, Shizuo Fujita, and Shigeo Fujita. "Engineered interface properties in ZnSSe/GaAs heterovalent heterostructures." Journal of Crystal Growth 214-215 (June 2000): 590–94. http://dx.doi.org/10.1016/s0022-0248(00)00159-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Klamut, P. W., B. Dabrowski, S. M. Mini, M. Maxwell, J. Mais, I. Felner, U. Asaf, et al. "On the effect of heterovalent substitutions in ruthenocuprates." Physica C: Superconductivity 387, no. 1-2 (May 2003): 33–39. http://dx.doi.org/10.1016/s0921-4534(03)00637-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Resta, R., A. Baldereschi [math], and S. Baroni. "Electronic properties of isovalent and heterovalent semiconductor interfaces." Journal de Chimie Physique 86 (1989): 789–98. http://dx.doi.org/10.1051/jcp/1989860789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sharma, P., T. Milakovich, M. T. Bulsara, and E. A. Fitzgerald. "Controlling Epitaxial GaAsxP1-x/Si1-yGey Heterovalent Interfaces." ECS Transactions 50, no. 9 (March 15, 2013): 333–37. http://dx.doi.org/10.1149/05009.0333ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Toropov, A. A., I. V. Sedova, S. V. Sorokin, Ya V. Terent'ev, E. L. Ivchenko, D. N. Lykov, S. V. Ivanov, J. P. Bergman, and B. Monemar. "III–V/II–VI heterovalent double quantum wells." physica status solidi (b) 243, no. 4 (March 2006): 819–26. http://dx.doi.org/10.1002/pssb.200564763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sano, Kazuaki, and Takashi Nakayama. "Monte Carlo Simulation of ZnSe/GaAs Heterovalent Epitaxy." Japanese Journal of Applied Physics 39, Part 1, No. 7B (July 30, 2000): 4289–91. http://dx.doi.org/10.1143/jjap.39.4289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tⱥle, V., I. Tⱥleand, and L. L. Nagornaya. "Thermoactivated spectroscopy of heterovalent impurity traps in CdWO4." Radiation Effects and Defects in Solids 134, no. 1-4 (December 1995): 477–80. http://dx.doi.org/10.1080/10420159508227272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Funato, Mitsuru, Shizuo Fujita, and Shigeo Fujita. "Energy states in ZnSe-GaAs heterovalent quantum structures." Physical Review B 60, no. 24 (December 15, 1999): 16652–59. http://dx.doi.org/10.1103/physrevb.60.16652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gunshor, R. L., M. Kobayashi, N. Otsuka, and A. V. Nurmikko. "Properties of II–VI/III–V heterovalent interfaces." Journal of Crystal Growth 115, no. 1-4 (December 1991): 652–59. http://dx.doi.org/10.1016/0022-0248(91)90821-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Коровушкин, В. В., А. В. Труханов, В. Г. Костишин, И. М. Исаев, И. В. Щетинин, Н. М. Дуров, А. Ю. Миронович, И. О. Минкова, and К. А. Астапович. "Исследование особенностей состава, магнитной и кристаллической структуры гексаферрита бария BaFe-=SUB=-12-x-=/SUB=-Ti-=SUB=-x-=/SUB=-O-=SUB=-19-=/SUB=-." Физика твердого тела 62, no. 5 (2020): 789. http://dx.doi.org/10.21883/ftt.2020.05.49250.622.

Full text
Abstract:
The results of studies of the composition, crystal, and magnetic structure of Ti-substituted barium hexaferrite BaFe12 - xTixO19 (0.25<x<1.5) by Mössbauer spectroscopy, vibration magnetometry, X-ray diffraction, and synchronous thermal analysis are presented. Partial substitution of Fe3 + ions by Ti4 + ions revealed the presence of a limited heterovalent isomorphism realized according to the 2Fe3+ = Ti4+ + Fe2+ while maintaining charge balance. Using Mössbauer spectroscopy, an increase in the electron density of 3d electrons and the presence of Fe2+ in BaFe12 - xTixO19 samples with x = 1.5 were established. The limit of heterovalent isomorphic substitution is established, which is in the range 0.75 <x <1.0. Using Mössbauer spectroscopy and X-ray diffraction, the formation of titanium-containing phases at x = 1, 0, the content of which increases with increasing degree of substitution, is shown. Information is provided on the predominant distribution of substituent ions (Ti4+) in the structure of barium hexaferrite at positions 12k and 2b.
APA, Harvard, Vancouver, ISO, and other styles
35

Chebyshev, K. A., A. V. Ignatov, L. V. Pasechnik, N. I. Selikova, and E. I. Get`man. "Investigation of the Heterovalent Substitution Cadmium for Lanthanum in Molybdate La2MoO6." Journal of Chemistry 2021 (May 27, 2021): 1–7. http://dx.doi.org/10.1155/2021/5537048.

Full text
Abstract:
This paper presents the investigation of the heterovalent substitution of cadmium for lanthanum in the La2-xCdxMoO6-x/2 system. The samples were synthesized by the solid state reaction method at 1000°C. The samples were characterized by X-ray powder diffraction with Rietveld refinements, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy methods. The study results revealed that cadmium incorporation in the lanthanum molybdate leads to the transformation of the tetragonal structure of La2MoO6 to a cubic fluorite-like one. The content of the cubic phase reaches 94% in the Lа1.4Cd0.6MoO5.7 sample. The unit cell parameter of fluorite-like-phase decreases with cadmium content rising. The preferred location of cadmium ions in the cubic structure was established by the Rietveld refinement method. The heterovalent substitution cadmium for lanthanide in tetragonal La2MoO6 molybdate leads to the cubic fluorite phase stabilization in a similar way as it occurs in the process of reduction.
APA, Harvard, Vancouver, ISO, and other styles
36

Korolyuk, V. N., and G. G. Lepezin. "The coefficients of heterovalent NaSi–CaAl interdiffusion in plagioclases." Russian Geology and Geophysics 50, no. 12 (December 2009): 1146–52. http://dx.doi.org/10.1016/j.rgg.2009.11.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

SCHMID-BEURMANN, P. "HETEROVALENT SUBSTITUTION IN IRON PHOSPHATES OF THE LAZULITE-TYPE." Phosphorus Research Bulletin 13 (2002): 209–14. http://dx.doi.org/10.3363/prb1992.13.0_209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Xiaoyu, Nasir Ali, Gang Bi, Yao Wang, Qibin Shen, Arash Rahimi-Iman, and Huizhen Wu. "Lead-Free Antimony Halide Perovskite with Heterovalent Mn2+ Doping." Inorganic Chemistry 59, no. 20 (October 7, 2020): 15289–94. http://dx.doi.org/10.1021/acs.inorgchem.0c02252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Klyndyuk, A. I., and E. A. Chizhova. "Heterovalent cation substitutions in the layered compound YBaCuFeO5 + δ." Inorganic Materials 43, no. 8 (August 2007): 866–72. http://dx.doi.org/10.1134/s0020168507080092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bellaiche, L., J. Padilla, and David Vanderbilt. "Heterovalent andA-atom effects inA(B′B″)O3perovskite alloys." Physical Review B 59, no. 3 (January 15, 1999): 1834–39. http://dx.doi.org/10.1103/physrevb.59.1834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Städele, M., J. A. Majewski, and P. Vogl. "Stability and Band Offsets of Heterovalent SiC/GaN Interfaces." Acta Physica Polonica A 88, no. 5 (November 1995): 917–20. http://dx.doi.org/10.12693/aphyspola.88.917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lassise, Maxwell B., Peng Wang, Brian D. Tracy, Guopeng Chen, David J. Smith, and Yong-Hang Zhang. "Growth of II-VI/III-V heterovalent quantum structures." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36, no. 2 (March 2018): 02D110. http://dx.doi.org/10.1116/1.5017972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pifferi, Carlo, Baptiste Thomas, David Goyard, Nathalie Berthet, and Olivier Renaudet. "Heterovalent Glycodendrimers as Epitope Carriers for Antitumor Synthetic Vaccines." Chemistry – A European Journal 23, no. 64 (October 25, 2017): 16283–96. http://dx.doi.org/10.1002/chem.201702708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tung, Raymond T., and Leeor Kronik. "Charge Density and Band Offsets at Heterovalent Semiconductor Interfaces." Advanced Theory and Simulations 1, no. 1 (December 1, 2017): 1700001. http://dx.doi.org/10.1002/adts.201700001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Petrov, M. I., Yu S. Gokhfeld, D. A. Balaev, S. I. Popkov, A. A. Dubrovskiy, D. M. Gokhfeld, and K. A. Shaykhutdinov. "Pinning enhancement by heterovalent substitution in Y1−xRExBa2Cu3O7−δ." Superconductor Science and Technology 21, no. 8 (June 5, 2008): 085015. http://dx.doi.org/10.1088/0953-2048/21/8/085015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nicolini, R., L. Vanzetti, Guido Mula, G. Bratina, L. Sorba, A. Franciosi, M. Peressi, et al. "Local interface composition and band discontinuities in heterovalent heterostructures." Physical Review Letters 72, no. 2 (January 10, 1994): 294–97. http://dx.doi.org/10.1103/physrevlett.72.294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Funato, Mitsuru, Shizuo Fujita, and Shigeo Fujita. "MOVPE growth and characterization of ZnSe-GaAs heterovalent heterostructures." Bulletin of Materials Science 18, no. 4 (August 1995): 343–59. http://dx.doi.org/10.1007/bf02749766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bonoldi, L., G. L. Calestani, M. G. Francesconi, G. Salsi, M. Sparpaglione, and L. Zini. "Structural stability of bismuth-based superconductors under heterovalent substitution." Physica C: Superconductivity 241, no. 1-2 (January 1995): 37–44. http://dx.doi.org/10.1016/0921-4534(94)02364-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Qiu, J., D. R. Menke, M. Kobayashi, R. L. Gunshor, Q. D. Qian, D. Li, and N. Otsuka. "ZnSe/GaAs heterovalent interfaces: interface microstructure versus electrical properties." Journal of Crystal Growth 111, no. 1-4 (May 1991): 747–51. http://dx.doi.org/10.1016/0022-0248(91)91074-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bezryadin, N. N., A. V. Budanov, E. A. Tatokhin, B. L. Agapov, and A. V. Linnik. "Preparation of In2Se3 layers on InAs by heterovalent substitution." Inorganic Materials 36, no. 9 (September 2000): 864–67. http://dx.doi.org/10.1007/bf02758692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography