Academic literature on the topic 'Hexahedral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hexahedral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hexahedral"
Bai, Xin Li, Bing Ma, and Jiang Yan Li. "A Practical Technique for Generating Hexahedral Meshes." Applied Mechanics and Materials 238 (November 2012): 214–17. http://dx.doi.org/10.4028/www.scientific.net/amm.238.214.
Full textStaten, Matthew L., Jason F. Shepherd, Franck Ledoux, and Kenji Shimada. "Hexahedral Mesh Matching: Converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces." International Journal for Numerical Methods in Engineering 82, no. 12 (December 3, 2009): 1475–509. http://dx.doi.org/10.1002/nme.2800.
Full textGheni, Mamtimin, X. F. Wang, and Masanori Kikuchi. "Study on Self-Consistent Mesh Generating Method of Hexahedron Element Based on the Local Waveform Method with Damping." Key Engineering Materials 306-308 (March 2006): 607–12. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.607.
Full textWang, Xu Fei, Mamtimin Gheni, Masanori Kikuchi, and Ju Rong Liu. "Study on Complex Structure Mesh Generating of Hexahedron Element Based on Improved Waveform Mesh Generating Method." Key Engineering Materials 462-463 (January 2011): 955–60. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.955.
Full textIslam, Md Shahidul, and Gazi Md Khalil. "MODIFICATION OF SURFACE MESH FOR THE GENERATION OF KNIFE ELEMENT FREE HEXAHEDRAL MESH." Journal of Mechanical Engineering 41, no. 2 (April 16, 2011): 103–13. http://dx.doi.org/10.3329/jme.v41i2.7505.
Full textSokolov, Dmitry, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. "Hexahedral-Dominant Meshing." ACM Transactions on Graphics 35, no. 5 (September 22, 2016): 1–23. http://dx.doi.org/10.1145/2930662.
Full textSokolov, Dmitry, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. "Hexahedral-Dominant Meshing." ACM Transactions on Graphics 36, no. 4 (July 20, 2017): 1. http://dx.doi.org/10.1145/3072959.2930662.
Full textSokolov, Dmitry, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. "Hexahedral-dominant meshing." ACM Transactions on Graphics 36, no. 4 (July 20, 2017): 1. http://dx.doi.org/10.1145/3072959.3126827.
Full textEGOROVA, Olga, Maria SAVCHENKO, Vladimir SAVCHENKO, and Ichiro HAGIWARA. "Topology and Geometry of Hexahedral Complex: Combined Approach for Hexahedral Meshing." Journal of Computational Science and Technology 3, no. 1 (2009): 171–82. http://dx.doi.org/10.1299/jcst.3.171.
Full textBremberg, Daniel, and Guido Dhondt. "Automatic Mixed-Mode Crack Propagation based on a Combined Hexahedral-Tetrahedral Approach." Key Engineering Materials 348-349 (September 2007): 581–84. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.581.
Full textDissertations / Theses on the topic "Hexahedral"
MIRANDA, FABIO MARKUS NUNES. "VOLUME RENDERING OF UNSTRUCTURED HEXAHEDRAL MESHES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28921@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Importantes aplicações de engenharia usam malhas não estruturadas de hexaedros para simulações numéricas. Células hexaédricas, comparadas com tetraedros, tendem a ser mais numericamente estáveis e requerem um menor refinamento da malha. Entretando, visualização volumétrica de malhas não estruturadas é um desafio devido a variação trilinear do campo escalar dentro da célula. A solução convencional consiste em subdividir cada hexaedro em cinco ou seis tetraedros, aproximando uma variação trilinear por uma inadequada série de funções lineares. Isso resulta em imagens inadequadas e aumenta o consumo de memória. Nesta tese, apresentamos um algoritmo preciso de visualização volumétrica utilizando ray-casting para malhas não estruturadas de hexaedros. Para capturar a variação trilinear ao longo do raio, nós propomos usar uma integração de quadratura. Nós também propomos uma alternativa rápida que melhor aproxima a variação trilinear, considerando os pontos de mínimo e máximo da função escalar ao longo do raio. Uma série de experimentos computacionais demonstram que nossa proposta produz resultados exatos, com um menor gasto de memória. Todo algoritmo é implementado em placas gráficas, garantindo uma performance competitiva.
Important engineering applications use unstructured hexahedral meshes for numerical simulations. Hexahedral cells, when compared to tetrahedral ones, tend to be more numerically stable and to require less mesh refinement. However, volume visualization of unstructured hexahedral meshes is challenging due to the trilinear variation of scalar fields inside the cells. The conventional solution consists in subdividing each hexahedral cell into five or six tetrahedra, approximating a trilinear variation by an inadequate piecewise linear function. This results in inaccurate images and increases the memory consumption. In this thesis, we present an accurate ray-casting volume rendering algorithm for unstructured hexahedral meshes. In order to capture the trilinear variation along the ray, we propose the use of quadrature integration. We also propose a fast approach that better approximates the trilinear variation to a series of linear ones, considering the points of minimum and maximum of the scalar function along the ray. A set of computational experiments demonstrates that our proposal produces accurate results, with reduced memory footprint. The entire algorithm is implemented on graphics cards, ensuring competitive performance.
Price, Mark A. "Hexahedral mesh generation by medial surface subdivision." Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286777.
Full textWoodbury, Adam C. "Localized Coarsening of Conforming All-Hexahedral Meshes." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2578.pdf.
Full textRoca, Navarro Xevi. "Paving the path towards automatic hexahedral mesh generation." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5858.
Full textLas implementaciones más competitivas del método de sweeping utilizan técnicas de proyección de mallas basadas en métodos afines. Los métodos afines más habituales presentan varios problemas relacionados con la obtención de sistemas de ecuaciones normales de rango deficiente. Para solucionar dichos problemas se presenta y analiza un nuevo método afín que depende de dos parámetros vectoriales. Además, se detalla un procedimiento automático para la selección de dichos vectores. El método de proyección resultante preserva la forma de las mallas proyectadas. Esta proyección es incorporada también en una nueva herramienta de sweeping. Dicha herramienta genera capas de nodos internos que respetan la curvatura de las superficies inicial y final. La herramienta de sweeping es capaz de mallar geometrías de extrusión definidas por trayectorias curvas, secciones no constantes a lo largo del eje de sweeping, y superficies inicial y final con diferente forma y curvatura.
En las últimas décadas se han propuesto varios ataques para la generación automática de mallas de hexahedros. Sin embargo, todavía no existe un algoritmo rápido y robusto que genere automáticamente mallas de hexaedros de alta calidad. Se propone un nuevo ataque para la generación de mallas por bloques mediante la representación de la geometría y la topología del dual de una malla de hexaedros. En dicho ataque, primero se genera una malla grosera de tetraedros. Después, varió polígonos planos se añaden al interior de los elementos de la malla grosera inicial. Dichos polígonos se denotan como contribuciones duales locales y representan una versión discreta del dual de una malla de hexaedros. En el último paso, la malla por bloques se obtiene como el dual de la representación del dual generada. El algoritmo de generación de mallas por bloques es aplicado a geometrías que presentan diferentes características geométricas como son superficies planas, superficies curvas, configuraciones delgadas, agujeros, y vértices con valencia mayor que tres.
Las mallas se generan habitualmente con la ayuda de entornos interactivos que integran una interfaz CAD y varios algoritmos de generación de mallas. Se presenta un nuevo entorno de generación de mallas especializado en la generación de cuadriláteros y hexaedros. Este entorno proporciona la tecnología necesaria para implementar les técnicas de generación de mallas de hexaedros presentadas en esta tesis.
This thesis deals with the development of hexahedral mesh generation technology. The process of generating hexahedral meshes is not fully automatic and it is a time consuming task. Therefore, it is important to develop tools that facilitate the generation of hexahedral meshes. To this end, a mesh projection method, a sweeping technique, a block-meshing algorithm, and an interactive mesh generation environment are presented and developed.
Competitive implementations of the sweeping method use mesh projection techniques based on affine methods. Standard affine methods have several drawbacks related to the statement of rank deficient sets of normal equations. To overcome these drawbacks a new affine method that depends on two vector parameters is presented and analyzed. Moreover, an automatic procedure that selects these two vector parameters is detailed. The resulting projection procedure preserves the shape of projected meshes. Then, this procedure is incorporated in a new sweeping tool. This tool generates inner layers of nodes that preserve the curvature of the cap surfaces. The sweeping tool is able to mesh extrusion geometries defined by non-linear sweeping trajectories, non-constant cross sections along the sweep axis, non-parallel cap surfaces, and cap surfaces with different shape and curvature.
In the last decades, several general-purpose approaches to generate automatically hexahedral meshes have been proposed. However, a fast and robust algorithm that automatically generates high-quality hexahedral meshes is not available. A novel approach for block meshing by representing the geometry and the topology of a hexahedral mesh is presented. The block-meshing algorithm first generates an initial coarse mesh of tetrahedral elements. Second, several planar polygons are added inside the elements of the initial coarse mesh. These polygons are referred as local dual contributions and represent a discrete version of the dual of a hexahedral mesh. Finally, the dual representation is dualized to obtain the final block mesh. The block-meshing algorithm is applied to mesh geometries that present different geometrical characteristics such as planar surfaces, curved surfaces, thin configurations, holes, and vertices with valence greater than three.
Meshes are usually generated with the help of interactive environments that integrate a CAD interface and several meshing algorithms. An overview of a new mesh generation environment focused in quadrilateral and hexahedral mesh generation is presented. This environment provides the technology required to implement the hexahedral meshing techniques presented in this thesis.
Paudel, Gaurab. "Hexahedral Mesh Refinement Using an Error Sizing Function." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3447.
Full textMalone, J. Bruce. "Two-Refinement by Pillowing for Structured Hexahedral Meshes." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3495.
Full textHarris, Nathan. "Conformal Refinement of All-Hexahedral Finite Element Meshes." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/3461.
Full textÖzdemir, Hüseyin. "High-order discontinuous Galerkin method on hexahedral elements for aeroacoustics." Enschede : University of Twente [Host], 2006. http://doc.utwente.nl/57867.
Full textParrish, Michael H. "A selective approach to conformal refinement of unstructured hexahedral meshes /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1985.pdf.
Full textParrish, Michael Hubbard. "A Selective Approach to Hexahedral Refinement of Unstructured Conformal Meshes." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/979.
Full textBooks on the topic "Hexahedral"
Greenspan, Donald. Conservative motion of a discrete, nonsymmetric, hexahedral gyroscope. Arlington, Tex: University of Texas at Arlington, Dept. of Mathematics, 1997.
Find full textAnanda, Himansu, Hultgren Lennart S, and NASA Glenn Research Center, eds. A 3-D CE/SE Navier-Stokes solver with unstructured hexahedral grid for computation of near field jet screech noise. [Cleveland, Ohio: NASA Glenn Research Center, 2003.
Find full textA 3-D CE/SE Navier-Stokes solver with unstructured hexahedral grid for computation of near field jet screech noise. [Cleveland, Ohio: NASA Glenn Research Center, 2003.
Find full textAnanda, Himansu, Hultgren Lennart S, and NASA Glenn Research Center, eds. A 3-D CE/SE Navier-Stokes solver with unstructured hexahedral grid for computation of near field jet screech noise. [Cleveland, Ohio: NASA Glenn Research Center, 2003.
Find full textAnanda, Himansu, Hultgren Lennart S, and NASA Glenn Research Center, eds. A 3-D CE/SE Navier-Stokes solver with unstructured hexahedral grid for computation of near field jet screech noise. [Cleveland, Ohio: NASA Glenn Research Center, 2003.
Find full textSukaneeyouth, Anan. Thirty-two nodes hexahedronal element subroutine for multi-purpose program MEF. 1986.
Find full textBook chapters on the topic "Hexahedral"
Chen, Jinming, Hua Zhu, Shuming Gao, and Haiyan Wu. "An Improved Hexahedral Mesh Matching Algorithm." In Proceedings of the 22nd International Meshing Roundtable, 183–201. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02335-9_11.
Full textGuo, Sha, Ronggang Wang, Xiubao Jiang, Zhenyu Wang, and Wen Gao. "Parallax-Robust Hexahedral Panoramic Video Stitching." In Advances in Multimedia Information Processing – PCM 2017, 598–608. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77380-3_57.
Full textIda, Nathan, and João P. A. Bastos. "Hexahedral Edge Elements — Some 3D Applications." In Electromagnetics and Calculation of Fields, 445–83. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0661-3_11.
Full textKaravaev, Alexander Sergeevich, and Sergey Petrovich Kopysov. "Hexahedral Mesh Generation Using Voxel Field Recovery." In Lecture Notes in Computational Science and Engineering, 295–305. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76798-3_19.
Full textDhondt, Guido. "Automatic 3-D Crack Propagation Calculations in Industrial Components: A Pure Hexahedral versus a Combined Hexahedral-Tetrahedral Approach." In Advances in Fracture and Damage Mechanics VI, 45–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.45.
Full textCohen, Gary, and Sébastien Pernet. "Hexahedral and Quadrilateral Spectral Elements for Acoustic Waves." In Scientific Computation, 95–173. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7761-2_3.
Full textSun, M., and K. Takayama. "A Solution-Adaptive Technique Using Unstructured Hexahedral Grids." In Computational Fluid Dynamics 2000, 55–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_5.
Full textGharbia, Ibtihel Ben, Jérôme Jaffré, N. Suresh Kumar, and Jean E. Roberts. "Benchmark 3D: A Composite Hexahedral Mixed Finite Element." In Finite Volumes for Complex Applications VI Problems & Perspectives, 969–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20671-9_94.
Full textShepherd, Jason F. "Conforming Hexahedral Mesh Generation via Geometric Capture Methods." In Proceedings of the 18th International Meshing Roundtable, 85–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04319-2_6.
Full textMukherjee, Nilanjan, Bhanu Peddi, Jean Cabello, and Michael Hancock. "Automatic Hexahedral Sweep Mesh Generation of Open Volumes." In Proceedings of the 21st International Meshing Roundtable, 333–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33573-0_20.
Full textConference papers on the topic "Hexahedral"
Chao, Pan, Liu Zhenyu, and Tan Jianrong. "Simplification of hexahedral mesh." In ACM SIGGRAPH 2012 Posters. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2342896.2343009.
Full textEppstein, David. "Linear complexity hexahedral mesh generation." In the twelfth annual symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/237218.237237.
Full textLindstrom, Peter, and Martin Isenburg. "Lossless Compression of Hexahedral Meshes." In 2008 Data Compression Conference DCC. IEEE, 2008. http://dx.doi.org/10.1109/dcc.2008.12.
Full textLu, Yong, Rajit Gadh, and Timothy J. Tautges. "Feature Decomposition for Hexahedral Meshing." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8618.
Full textBenzley, Steven, Ted D. Blacker, Scott A. Mitchell, Peter Murdoch, and Timothy J. Tautges. "Hexahedral mesh generation via the dual." In the eleventh annual symposium. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/220279.220323.
Full textMatringe, Se´bastien F., Ruben Juanes, and Hamdi A. Tchelepi. "A New Mixed Finite Element and its Related Finite Volume Discretization on General Hexahedral Grids." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68075.
Full textHirsch, Charles, Andrey Wolkov, and Benoit Leonard. "Discontinuous Galerkin Method on Unstructured Hexahedral Grids." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-177.
Full textYu, Wuyi, Kang Zhang, and Xin Li. "Recent algorithms on automatic hexahedral mesh generation." In 2015 10th International Conference on Computer Science & Education (ICCSE). IEEE, 2015. http://dx.doi.org/10.1109/iccse.2015.7250335.
Full textMiranda, F´bio Markus, and Waldemar Celes. "Accurate Volume Rendering of Unstructured Hexahedral Meshes." In 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images (Sibgrapi). IEEE, 2011. http://dx.doi.org/10.1109/sibgrapi.2011.3.
Full textShih, Bih-Yaw, and Hiroshi Sakurai. "Automatic Regular Hexahedral Mesh Generation by Regular Volume Decomposition." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/cie-4497.
Full textReports on the topic "Hexahedral"
Owen, Steven, Corey Ernst, and Clinton Stimpson. Sculpt: Automatic Parallel Hexahedral Mesh Generation. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1762652.
Full textGrandy, J. Efficient computation of volume of hexahedral cells. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/632793.
Full textJ. MOREL, J. MCGHEE, and ET AL. 3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/768173.
Full textNaff, R. L., T. F. Russell, and J. D. Wilson. Shape Functions for Velocity Interpolation in General Hexahedral Cells. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada453117.
Full textStaten, Matthew L., and Steven James Owen. Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1008123.
Full textEvans, John A., and Thomas J. Hughes. Explicit Trace Inequalities for Isogeometric Analysis and Parametric Hexahedral Finite Elements. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada555335.
Full textWang, Wenyan, Yongjie Zhang, Guoliang Xu, and Thomas J. Hughes. Converting an Unstructured Quadrilateral/Hexahedral Mesh to a Rational T-spline. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada555343.
Full textLeland, Robert W. Comparative Study of Hexahedral and Tetrahedral Elements for Non-linear Structural Analysis. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/1331497.
Full textAftosmis, Michael J. Viscous Flow Simulation Using an Upwind Method for Hexahedral Based Adaptive Meshes. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada265901.
Full textPark, Byoung Yoon, and Barry L. Roberts. Construction of hexahedral elements mesh capturing realistic geometries of Bayou Choctaw SPR site. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214248.
Full text