Academic literature on the topic 'High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V"

1

Lanning, D., G. K. Haritos, T. Nicholas, and D. C. Maxwell. "Low-cycle fatigue/high-cycle fatigue interactions in notched Ti-6Al-4V*." Fatigue & Fracture of Engineering Materials & Structures 24, no. 9 (September 28, 2001): 565–77. http://dx.doi.org/10.1046/j.1460-2695.2001.00411.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Peng, Allen Naihui He, Fei Liu, Kaifei Zhang, Junjie Jiang, and David Zhengwen Zhang. "Evaluation of Low Cycle Fatigue Performance of Selective Laser Melted Titanium Alloy Ti–6Al–4V." Metals 9, no. 10 (September 25, 2019): 1041. http://dx.doi.org/10.3390/met9101041.

Full text
Abstract:
The material of Ti–6Al–4V has been widely applied in various industries, such as automobile, aerospace, and medical due to its high specific strength, superior thermal stability and strong corrosion resistance. In the recent decades, selective laser melting (SLM) has become an attractive method to fabricate Ti–6Al–4V parts, thanks to its significant advantages in low material consumption, the high degree of freedom in design, low carbon footprint, etc. Predictability of SLM material fatigue properties is especially important for the safety-critical structures under dynamic load cases. The present research is aimed at evaluating the low cycle fatigue (LCF) performance of SLM Ti–6Al–4V under high loading states. LCF tests were performed for as-built and annealed SLM Ti–6Al–4V. Comparison between LCF properties of SLM Ti–6Al–4V and the wrought Ti–6Al–4V was also made. It was found that as-built SLM Ti–6Al–4V demonstrated a comparable LCF performance with the wrought material. The LCF life of as-built SLM Ti–6Al–4V was longer than that of wrought Ti–6Al–4V at lower strain amplitudes. However, the wrought Ti–6Al–4V had better LCF performance at higher strain amplitudes. The results revealed that the porosity in the as-built SLM material exerted much more impact on the degradation of the material at high strain amplitudes. Annealing deteriorated the LCF performance of SLM Ti–6Al–4V material due to the formation of coarser grains. The cyclic Ramberg–Osgood and the Basquin–Coffin–Manson models were fitted to depict the cyclic stress–strain and the strain–life curves for the SLM Ti–6Al–4V, based on which the LCF performance parameters were determined. In addition, the fatigue fracture surfaces were observed by using scanning electron microscopy (SEM), and the results indicated that fatigue cracks originated from the surface or subsurface defects.
APA, Harvard, Vancouver, ISO, and other styles
3

Ritchie, Davidson, Boyce, Campbell, and Roder. "High-cycle fatigue of Ti-6Al-4V." Fatigue & Fracture of Engineering Materials & Structures 22, no. 7 (July 1999): 621–31. http://dx.doi.org/10.1046/j.1460-2695.1999.00194.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tang, Luyao, Jiangkun Fan, Hongchao Kou, Bin Tang, and Jinshan Li. "Effect of Oxygen Variation on High Cycle Fatigue Behavior of Ti-6Al-4V Titanium Alloy." Materials 13, no. 17 (September 1, 2020): 3858. http://dx.doi.org/10.3390/ma13173858.

Full text
Abstract:
The element oxygen is expected to be a low-cost, strengthening element of titanium alloys due to its strong solid solution strengthening effect. High cycle fatigue behaviors of Ti-6Al-4V alloys with different oxygen contents (0.17%, 0.20%, 0.23% wt.%) were investigated in this paper. The results illustrated that Ti-6Al-4V-0.20O alloy possesses the highest fatigue strength and the lowest fatigue crack propagation rate. The fatigue fracture morphology verified that the fatigue cracks propagated transgranularly in both Ti-6Al-4V-0.17O and Ti-6Al-4V-0.20O alloys, and the fatigue cracks tended to extend intergranularly in the Ti-6Al-4V-0.23O alloy. The maximum nano-hardness varied from the <0001> direction to the <1¯21¯0> and <011¯0> directions with the increasing oxygen content, which suggested that the dominant slip system varied from prismatic slip to pyramidal slip. The number of the <c→+a→> type dislocations increased with the oxygen content, which indicated that the number of the first-order pyramidal and the second-order pyramidal <c→+a→> slip systems increased. The oxygen can significantly change the fatigue fracture mechanism of Ti-6Al-4V alloy: From transgranular fracture to intergranular fracture. These results are expected to provide valuable reference for the optimization of the composition and mechanical properties of titanium alloys.
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Yan Zeng, Qing Yuan Wang, and Qiao Lin Ouyang. "Influence of Subjection to Plasma Nitriding Surface Modifications on Ultra-High Cycle Fatigue Behavior of Ti-6Al-4V." Applied Mechanics and Materials 105-107 (September 2011): 1731–35. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.1731.

Full text
Abstract:
Using the ultrasonic fatigue test method, the influence of subjection to plasma nitriding surface modifications on the ultra-high cycle fatigue behavior of Ti-6Al-4V was investigated, then a comparison with corresponding behaviors of the normal Ti-6Al-4V was made. The results show the S-N curve of Ti-6Al-4V with plasma nitriding surface modifications still continuously declines, no conventional fatigue limit exists for Ti-6Al-4V. Plasma nitriding surface modifications enhance surface hardness, but they make the material fatigue strength decrease by about 17 %. The fractography of fatigue failure has been observed by scanning electron microscopy. The observation shows that fatigue failure initiates from internal of specimen after the fatigue life of 108cycles and fatigue cracks mainly initiate from the surface of specimen before the fatigue life of 108cycles.
APA, Harvard, Vancouver, ISO, and other styles
6

Shojima, Kenji, Sabine Weldle, Saburo Okazaki, Masahiro Endo, Dietmar Eifler, and Frank Balle. "Notch Effects in High Cycle Fatigue of Ti-6Al-4V." Materials Science Forum 750 (March 2013): 232–35. http://dx.doi.org/10.4028/www.scientific.net/msf.750.232.

Full text
Abstract:
In this study, a series of experimental studies was conducted to investigate the fatigue behavior of Ti-6Al-4V alloy at room temperature. Specifically, by inspecting the cylindrical specimens with a circumferential notch of different depths (20-200µm) and notch root radii (20-100µm), the notch effect was systematically investigated with tension-compression fatigue tests (R = –1). To quantify the effects of small notch, the -parameter model was adopted and its applicability for Ti-6Al-4V alloy was examined. Finally, the fatigue characteristics are discussed in conjunction with the behavior of small fatigue cracks at notches.
APA, Harvard, Vancouver, ISO, and other styles
7

Bin Jamal M, Noushad, Aman Kumar, Chebolu Lakshmana Rao, and Cemal Basaran. "Low Cycle Fatigue Life Prediction Using Unified Mechanics Theory in Ti-6Al-4V Alloys." Entropy 22, no. 1 (December 23, 2019): 24. http://dx.doi.org/10.3390/e22010024.

Full text
Abstract:
Fatigue in any material is a result of continuous irreversible degradation process. Traditionally, fatigue life is predicted by extrapolating experimentally curve fitted empirical models. In the current study, unified mechanics theory is used to predict life of Ti-6Al-4V under monotonic tensile, compressive and cyclic load conditions. The unified mechanics theory is used to derive a constitutive model for fatigue life prediction using a three-dimensional computational model. The proposed analytical and computational models have been used to predict the low cycle fatigue life of Ti-6Al-4V alloys. It is shown that the unified mechanics theory can be used to predict fatigue life of Ti-6Al-4V alloys by using simple predictive models that are based on fundamental equation of the material, which is based on thermodynamics associated with degradation of materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Ebara, Ryuichiro. "Grain Size Effect on Low Cycle Fatigue Behavior of High Strength Structural Materials." Solid State Phenomena 258 (December 2016): 269–72. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.269.

Full text
Abstract:
This paper presents grain size effect on low cycle fatigue behavior of high strength maraging steel with gain size of 20,60 and 100μm and Ti-6Al-4V alloy with grain size of 0.5,1.4 and 5.1μm. Low cycle fatigue strength of the maraging steel depends on grain size in number of cycles up to 103.The smaller the grain size, the higher the low cycle fatigue strength was. Quasci-cleavage fracture surfaces were predominant for material with grain size of 20μm,while intergranular fracture surfaces were predominant for materials with larger grain size in number of cycles lower than 60. Striation was predominant for all tested materials in number of cycles higher than 60.Low cycle fatigue strength of Ti-6Al-4V alloy also depends on grain size in number of cycles up to 104. Grain size dependent transgranular fracture surfaces were predominant for materials with ultra-fine grain size of 0.5μm and fine grain size of 1.4μm.
APA, Harvard, Vancouver, ISO, and other styles
9

Rajan, Sidharth, Priti Wanjara, Javad Gholipour, and Abu Syed Kabir. "Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds." Materials 14, no. 11 (June 7, 2021): 3136. http://dx.doi.org/10.3390/ma14113136.

Full text
Abstract:
The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β to equilibrated levels of α + β phases and recovering the hardness. Thus, the dissimilar alloy joints were fatigue-tested in the SRA (750 °C for 2 h) condition and their low- and high-cycle fatigue behaviors were compared to those of the Ti64 and Ti6242 base metals (BMs). The low-cycle fatigue (LCF) behavior of the dissimilar Ti6242–Ti64 linear friction welds was characterized by relatively high maximum stress values (~ 900 to 1100 MPa) and, in the high-cycle fatigue (HCF) regime, the fatigue limit of 450 MPa at 107 cycles was just slightly higher than that of the Ti6242 BM (434 MPa) and the Ti64 BM (445 MPa). Fatigue failure of the dissimilar titanium alloy welds in the low-cycle and high-cycle regimes occurred, respectively, on the Ti64 and Ti6242 sides, roughly 3 ± 1 mm away from the weld center, and the transitioning was reasoned based on the microstructural characteristics of the BMs.
APA, Harvard, Vancouver, ISO, and other styles
10

MALL, S. "Effect of predamage from low cycle fatigue on high cycle fatigue strength of Ti-6Al-4V." International Journal of Fatigue 25, no. 9-11 (September 2003): 1109–16. http://dx.doi.org/10.1016/s0142-1123(03)00116-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V"

1

Knipling, Keith Edward. "High-cycle fatigue / low-cycle fatigue interactions in Ti-6Al-4V." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/41290.

Full text
Abstract:
The largest single cause of failure in fan and compressor components in the cold frontal sections of commercial and military gas turbine engines has been attributed to high cycle fatigue (HCF). Additionally, both high-cycle fatigue (HCF) and lowcycle fatigue (LCF) loadings are widely recognized as unavoidable during operation of these components and because the classic Linear Damage Rule (LDR) neglects to account for the synergistic interaction between these damage contributors, dangerous over predictions of lifetime can result. Combined low-cycle fatigue / high-cycle fatigue (HCF/LCF) loadings were investigated in smooth Ti-6Al-4V. The specimens were subjected to a variable amplitude block loading history comprised of completely-reversed (R = -1) tensioncompression overloads followed by constant-amplitude zero-tension (R = 0) minor cycles. Axial specimens were excised from forgings representative of turbine engine fan blade forgings, and consisted of approximately 60% primary α in a matrix of lamellar α + β. Data are reported for smooth specimens of Ti-6Al-4V subjected to both constant amplitude and variable amplitude loadings. The axial specimens were prepared according to two distinct specimen conditions: low stress ground and longitudinallypolished (LSG+LP) and stress-relieved and chemically milled (SR+CM) conditions. Significantly longer lives were observed for the LSG+LP specimen condition under both constant and variable amplitude loading, due to the presence of a beneficial compressive surface residual stress. The presence of this residual stress was confirmed by x-ray diffraction, and its magnitude was of the order of 180 MPa (~20% of the yield stress). In either specimen condition, no appreciable effect of periodic overloads on the life of subsequent minor cycles was observed.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Polasik, Alison K. "The Role of Microstructure on High Cycle Fatigue Lifetime Variability in Ti-6Al-4V." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1412676768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holycross, Casey M. "A Critical Assessment of the High Cycle Bending Fatigue Behavior of Boron-modified Ti-6Al-4V." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1283881630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Juratovac, Joseph M. "Strain Rate Sensitivity of Ti-6Al-4V and Inconel 718 and its Interaction with Fatigue Performance at Different Speeds." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1605875502029283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gaddam, Raghuveer. "Effect of boron and hydrogen on microstructure and mechanical properties of cast Ti-6Al-4V." Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17757.

Full text
Abstract:
Titanium and its alloys are widely used in applications ranging from aeroengines and offshore equipment to biomedical implants and sporting goods, owing to their high ratio of strength to density, excellent corrosion resistance, and biomedical compatibility. Among the titanium alloys used in aerospace, Ti-6Al-4V (an α+β alloy) is the most widely used, in applications in which the temperature may reach 350°C, at which point it retains good fatigue and fracture properties as well as moderate tensile strength and ductility. These alloy properties are dependent on variables such as crystalline structure, alloy chemistry, manufacturing techniques and environmental conditions during service. These variables influence the microstructure and mechanical properties of titanium alloys. With regard to the alloy chemistry and operating environment, the focus of the present work is to understand the influence of boron and hydrogen on the microstructure and selected mechanical properties of cast Ti-6Al-4V. The addition of boron to cast Ti-6Al-4V (0.06 and 0.11 wt% in this work) refines the coarse “as cast” microstructure, which is evaluated quantitatively using FoveaPro image analysis software. Compression testing was performed using a Gleeble 1500 instrument, by applying a 10% strain at different strain rates (0.001, 0.1 and 1 s-1) for temperatures in the range 25-1100°C. The tests were performed to evaluate the effect of boron on the mechanical properties of the alloy. It was observed that there is an increase in the compressive strength, predominantly at room temperature, of cast Ti-6Al-4V after the addition of boron. Metallographic evaluation showed that this increase in strength is a likely result of reductions in both the prior β grain and α colony dimensions, which is caused by boron addition. Studies in a hydrogen environment at 150 bar showed that cast Ti-6Al-4V exhibited lower yield strength and lower ultimate tensile strength in comparison with those properties measured in an air environment. No significant change in the ductility was observed. It was also noted that in a high strain range (≈2%) the low cycle fatigue (LCF) life was significantly reduced in hydrogen compared with air. Microstructural and fractographic characterization techniques were used to establish the role of hydrogen on the deformation mechanism by analysing the crack propagation path through the microstructure. It is seen that cracks tend to propagate along the interface between prior β grain boundaries and/or along the α colony boundaries
Godkänd; 2011; 20110823 (raggad); LICENTIATSEMINARIUM Ämnesområde: Konstruktionsmaterial/Engineering Materials Examinator: Docent Marta-Lena Antti, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: PhD Magnus Hörnqvist, Volvo Aero Corp. Materials Technology, Trollhättan Tid: Torsdag den 22 september 2011 kl 10.00 Plats: E246, Luleå tekniska universitet
APA, Harvard, Vancouver, ISO, and other styles
6

Bártková, Denisa. "Vysokocyklová únava titanové slitiny Ti6Al4V." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230930.

Full text
Abstract:
The main goal of this master's thesis is an analysis of high-cycle fatigue of titanium alloy Ti- 6Al- 4V. In the first section of a theoretical part of the thesis, there are summarized current facts about production, properties and aplications of titanium alloys. The second section pursues fatigue behaviour of material. An experimental part consists of metallographic analysis, evaluation of tension and bending tests and mainly analysis of high-cycle fatigue behavior for different assymetry ratios.
APA, Harvard, Vancouver, ISO, and other styles
7

Bantounas, Ioannis. "Microtexture and high cycle fatigue cracking in Ti-6A1-4V." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morrissey, Ryan J. "Frequency and mean stress effects in high cycle fatigue of Ti-6A1-4V." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

(8741097), Ritwik Bandyopadhyay. "ENSURING FATIGUE PERFORMANCE VIA LOCATION-SPECIFIC LIFING IN AEROSPACE COMPONENTS MADE OF TITANIUM ALLOYS AND NICKEL-BASE SUPERALLOYS." Thesis, 2020.

Find full text
Abstract:
In this thesis, the role of location-specific microstructural features in the fatigue performance of the safety-critical aerospace components made of Nickel (Ni)-base superalloys and linear friction welded (LFW) Titanium (Ti) alloys has been studied using crystal plasticity finite element (CPFE) simulations, energy dispersive X-ray diffraction (EDD), backscatter electron (BSE) images and digital image correlation (DIC).

In order to develop a microstructure-sensitive fatigue life prediction framework, first, it is essential to build trust in the quantitative prediction from CPFE analysis by quantifying uncertainties in the mechanical response from CPFE simulations. Second, it is necessary to construct a unified fatigue life prediction metric, applicable to multiple material systems; and a calibration strategy of the unified fatigue life model parameter accounting for uncertainties originating from CPFE simulations and inherent in the experimental calibration dataset. To achieve the first task, a genetic algorithm framework is used to obtain the statistical distributions of the crystal plasticity (CP) parameters. Subsequently, these distributions are used in a first-order, second-moment method to compute the mean and the standard deviation for the stress along the loading direction (σ_load), plastic strain accumulation (PSA), and stored plastic strain energy density (SPSED). The results suggest that an ~10% variability in σ_load and 20%-25% variability in the PSA and SPSED values may exist due to the uncertainty in the CP parameter estimation. Further, the contribution of a specific CP parameter to the overall uncertainty is path-dependent and varies based on the load step under consideration. To accomplish the second goal, in this thesis, it is postulated that a critical value of the SPSED is associated with fatigue failure in metals and independent of the applied load. Unlike the classical approach of estimating the (homogenized) SPSED as the cumulative area enclosed within the macroscopic stress-strain hysteresis loops, CPFE simulations are used to compute the (local) SPSED at each material point within polycrystalline aggregates of 718Plus, an additively manufactured Ni-base superalloy. A Bayesian inference method is utilized to calibrate the critical SPSED, which is subsequently used to predict fatigue lives at nine different strain ranges, including strain ratios of 0.05 and -1, using nine statistically equivalent microstructures. For each strain range, the predicted lives from all simulated microstructures follow a log-normal distribution; for a given strain ratio, the predicted scatter is seen to be increasing with decreasing strain amplitude and are indicative of the scatter observed in the fatigue experiments. Further, the log-normal mean lives at each strain range are in good agreement with the experimental evidence. Since the critical SPSED captures the experimental data with reasonable accuracy across various loading regimes, it is hypothesized to be a material property and sufficient to predict the fatigue life.

Inclusions are unavoidable in Ni-base superalloys, which lead to two competing failure modes, namely inclusion- and matrix-driven failures. Each factor related to the inclusion, which may contribute to crack initiation, is isolated and systematically investigated within RR1000, a powder metallurgy produced Ni-base superalloy, using CPFE simulations. Specifically, the role of the inclusion stiffness, loading regime, loading direction, a debonded region in the inclusion-matrix interface, microstructural variability around the inclusion, inclusion size, dissimilar coefficient of thermal expansion (CTE), temperature, residual stress, and distance of the inclusion from the free surface are studied in the emergence of two failure modes. The CPFE analysis indicates that the emergence of a failure mode is an outcome of the complex interaction between the aforementioned factors. However, the possibility of a higher probability of failure due to inclusions is observed with increasing temperature, if the CTE of the inclusion is higher than the matrix, and vice versa. Any overall correlation between the inclusion size and its propensity for damage is not found, based on inclusion that is of the order of the mean grain size. Further, the CPFE simulations indicate that the surface inclusions are more damaging than the interior inclusions for similar surrounding microstructures. These observations are utilized to instantiate twenty realistic statistically equivalent microstructures of RR1000 – ten containing inclusions and remaining ten without inclusions. Using CPFE simulations with these microstructures at four different temperatures and three strain ranges for each temperature, the critical SPSED is calibrated as a function of temperature for RR1000. The results suggest that critical SPSED decreases almost linearly with increasing temperature and is appropriate to predict the realistic emergence of the competing failure modes as a function of applied strain range and temperature.

LFW process leads to the development of significant residual stress in the components, and the role of residual stress in the fatigue performance of materials cannot be overstated. Hence, to ensure fatigue performance of the LFW Ti alloys, residual strains in LFW of similar (Ti-6Al-4V welded to Ti-6Al-4V or Ti64-Ti64) and dissimilar (Ti-6Al-4V welded to Ti-5Al-5V-5Mo-3Cr or Ti64-Ti5553) Ti alloys have been characterized using EDD. For each type of LFW, one sample is chosen in the as-welded (AW) condition and another sample is selected after a post-weld heat treatment (HT). Residual strains have been separately studied in the alpha and beta phases of the material, and five components (three axial and two shear) have been reported in each case. In-plane axial components of the residual strains show a smooth and symmetric behavior about the weld center for the Ti64-Ti64 LFW samples in the AW condition, whereas these components in the Ti64-Ti5553 LFW sample show a symmetric trend with jump discontinuities. Such jump discontinuities, observed in both the AW and HT conditions of the Ti64-Ti5553 samples, suggest different strain-free lattice parameters in the weld region and the parent material. In contrast, the results from the Ti64-Ti64 LFW samples in both AW and HT conditions suggest nearly uniform strain-free lattice parameters throughout the weld region. The observed trends in the in-plane axial residual strain components have been rationalized by the corresponding microstructural changes and variations across the weld region via BSE images.

In the literature, fatigue crack initiation in the LFW Ti-6Al-4V specimens does not usually take place in the seemingly weakest location, i.e., the weld region. From the BSE images, Ti-6Al-4V microstructure, at a distance from the weld-center, which is typically associated with crack initiation in the literature, are identified in both AW and HT samples and found to be identical, specifically, equiaxed alpha grains with beta phases present at the alpha grain boundaries and triple points. Hence, subsequent fatigue performance in LFW Ti-6Al-4V is analyzed considering the equiaxed alpha microstructure.

The LFW components made of Ti-6Al-4V are often designed for high cycle fatigue performance under high mean stress or high R ratios. In engineering practice, mean stress corrections are employed to assess the fatigue performance of a material or structure; albeit this is problematic for Ti-6Al-4V, which experiences anomalous behavior at high R ratios. To address this problem, high cycle fatigue analyses are performed on two Ti-6Al-4V specimens with equiaxed alpha microstructures at a high R ratio. In one specimen, two micro-textured regions (MTRs) having their c-axes near-parallel and perpendicular to the loading direction are identified. High-resolution DIC is performed in the MTRs to study grain-level strain localization. In the other specimen, DIC is performed on a larger area, and crack initiation is observed in a random-textured region. To accompany the experiments, CPFE simulations are performed to investigate the mechanistic aspects of crack initiation, and the relative activity of different families of slip systems as a function of R ratio. A critical soft-hard-soft grain combination is associated with crack initiation indicating possible dwell effect at high R ratios, which could be attributed to the high-applied mean stress and high creep sensitivity of Ti-6Al-4V at room temperature. Further, simulations indicated more heterogeneous deformation, specifically the activation of multiple families of slip systems with fewer grains being plasticized, at higher R ratios. Such behavior is exacerbated within MTRs, especially the MTR composed of grains with their c-axes near parallel to the loading direction. These features of micro-plasticity make the high R ratio regime more vulnerable to fatigue damage accumulation and justify the anomalous mean stress behavior experienced by Ti-6Al-4V at high R ratios.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V"

1

Effects of Shot-Peening on High Cycle Fretting Fatigue Behavior of Ti- 6Al-4V. Storming Media, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Effects of Foreign Object Damage From Small Hard Particles on the High- Cycle Fatigue Life of Ti-6Al-4V. Storming Media, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V"

1

Amsterdam, E., and G. A. Kool. "High Cycle Fatigue of Laser Beam Deposited Ti-6Al-4V and Inconel 718." In ICAF 2009, Bridging the Gap between Theory and Operational Practice, 1261–74. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2746-7_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Yunxi, Wei Chen, Zhiqiang Li, Zheyuan Chen, and Gang Yao. "Comparison of the High Cycle Fatigue Behavior of Ti–6Al–4V Produced Respectively by EBM and Hot-Rolling." In Lecture Notes in Mechanical Engineering, 269–77. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0107-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ochi, Yasuo, Akira Ishii, Shigemi K. Sasaki, and Ichiro Ohdachi. "Effect of Single Over-Straining on Surface Crack Growth Behaviour of Low Cycle Fatigue in Ti-6A1-4V Alloy." In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials—3, 751–56. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2860-5_118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rekedal, Kevin D., and David Liu. "Investigation of the high-cycle fatigue life of selective laser melted and hot isostatically pressed Ti-6Al-4V." In Additive Manufacturing Handbook, 569–74. CRC Press, 2017. http://dx.doi.org/10.1201/9781315119106-31.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V"

1

Yan, Nu, Xin Zhu, Donggui Han, Fang Liu, and Yonghua Yu. "Very high cycle fatigue behavior of Ti-6Al-4V alloy." In 4th Annual International Conference on Material Engineering and Application (ICMEA 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icmea-17.2018.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Yu-Jia, Lin-Bo Mei, and Fu-Zhen Xuan. "High Cycle Fatigue of Ti-6Al-4V Alloy in Simulated Steam Environment." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-44128.

Full text
Abstract:
Fatigue life and reliability are the critical problems for long blades design due to complicated stress state, wet steam and aggressive environment. In this report, the effects of stress ratio, surface properties, steam, and sodium-chloride (NaCl) aqueous environments on the fatigue strength and fracture mechanisms of Ti-6Al-4V alloy have been investigated. Results indicate that residual compressive stress decreases and vanishes finally with increasing stress ratio. Compared to fatigue crack originating from surface for annealed specimens, the fatigue crack initiation sites are located in the interior of the specimen due to the effect of residual stress when low stress ratios are present. Fatigue experiments have been performed in saturated steam with low oxygen content at 100°C and NaCl aqueous at 80 °C. Results indicate that, for 0.1 stress ratio loading conditions, steam environment demonstrates the most serious effect on the endurance limit with 12.3% reduction of fatigue strength. NaCl aqueous leads to the 9.6% drop in fatigue strength corresponding to 107 cycles of design life. For all corrosion environments, cracks originated from the surface and no corrosion pits were observed.
APA, Harvard, Vancouver, ISO, and other styles
3

Nakamura, Hiroshi, Masahiro Takanashi, Yu Itabashi, Hiroshi Kuroki, and Yusuke Ueda. "Shot Peening Effect on Low Cycle Fatigue Properties of Ti-6Al-4V and Inconel 718." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46847.

Full text
Abstract:
This study investigates the shot peening effect on low cycle fatigue properties of two turbo engine materials, Ti-6Al-4V and Inconel 718, in view of the residual stress relaxation by the cyclic load and the thermal relaxation. Strain controlled fatigue tests for Ti-6Al-4V were carried out at room temperature. The fatigue tests for Inconel 718 were conducted at room temperature and 620C. An X-ray diffraction method was used to measure the residual stresses induced by shot peening. The compressive residual stress of Ti-6Al-4V specimen had retained about 60% after half the number of cycles to failure. It is confirmed that shot peening enhances strain range capability of Ti-6Al-4V at the life between 104 and 105 cycles region about 1.5 times higher than that of non-peened specimen. This result is attributed to the retained compressive layer even after applied cyclic loading. Shot peening enhanced the strain range capability of the Inconel 718 specimen at room temperature, by a factor of 1.3 compared to polished specimen at the life of 104 cycles region. The residual stress near the surface has been relaxed rapidly at turbine engine temperature, however, the residual stresses in the deep subsurface have been retained. The peened specimen tested at 620C tended to be slightly higher strain range than those of polished specimen at the life of 105 cycles.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yu-Jia, Fu-Zhen Xuan, Zheng-Dong Wang, and Shan-Tung Tu. "Effects of Residual Stresses on the High Cycle Fatigue Behavior of Ti-6Al-4V." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25364.

Full text
Abstract:
Axial force-controlled fatigue tests are conducted at various stress ratios (R) on Ti-6Al-4V specimens prepared by two different manufacturing techniques (hard turning plus polishing with and without vacuum stress relieve anneal carried out after polishing). Residual stress is measured by using X-ray diffraction. Results indicate that the surface compressive residual stress lead to an increase of fatigue limit at a given life and stress ratio. This effect decreases with increasing stress ratio R. At R = 0.6, the effect of surface residual stress on fatigue limit fades away. In addition, the location of crack initiation shifts from surface to interior when the stress ratio changes from −1 to 0.6.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuri, T. "High-Cycle Fatigue Properties of Notched Specimens for Ti-6Al-4V ELI Alloy at Cryogenic Temperatures." In ADVANCES IN CRYOGENIC ENGINEERING. AIP, 2006. http://dx.doi.org/10.1063/1.2192347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ono, Yoshinori, Tetsumi Yuri, Toshio Ogata, Saburo Matsuoka, and Hideo Sunakawa. "Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the International Cryogenic Materials Conference ICMC Volume 60. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4860599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rahman, M. Shafiqur, and Uttam K. Chakravarty. "Tensile and Fatigue Properties of Ti-6Al-4V Alloy Fabricated by Laser Powder-Bed Fusion Process." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23672.

Full text
Abstract:
Abstract The tensile and fatigue properties of laser-powder-bed-fusion (L-PBF) processed Ti-6Al-4V specimens are investigated at different loading conditions. Two types of as-built and post-machined L-PBF processed dogbone specimens are considered for the study, one is an ASTME8M round specimen and the other one is a customized small-scale flat structure. The tensile and fatigue behavior of the specimens are investigated numerically using the finite element (FE) method. The FE modeling considers both low cycle fatigue (LCF) and high cycle fatigue (HCF) test conditions by applying cyclic loads in fully-reversed and stress ratio R = 0.1 conditions. The FE results for the von Mises stress, strain, total deformation, fatigue life, factor of safety, and fatigue limit of the Ti-6Al-4V specimens are obtained at room temperature (295 K). Results obtained from the model show that the fatigue life decreases as the load increases. It is also found that fatigue life does not vary with the change of the test frequency under a specific fatigue load. The comparison of mechanical properties of the L-PBF processed specimens with conventionally manufactured Ti-6Al-4V parts is also shown to understand the differences in the tensile and fatigue behavior. The validation of the FE model is performed by comparing the numerical results for the yield stress and fatigue limit with the experimental results found from the literature. The overall study contains a detailed analysis of the tensile and fatigue behavior of additively manufactured Ti-6Al-4V parts and provides a guide to investigating the similar properties for other functional materials used in the L-PBF process.
APA, Harvard, Vancouver, ISO, and other styles
8

Yuri, T., Y. Ono, T. Ogata, and H. Sunakawa. "Effect of microstructure on high-cycle fatigue properties of Ti-6Al-4V alloy forging at cryogenic temperatures." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the International Cryogenic Materials Conference ICMC Volume 60. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4860600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Preve´y, Paul S., N. Jayaraman, Ravi A. Ravindranath, and Michael Shepard. "Improved High Cycle Fatigue Damage Tolerance of Turbine Engine Compressor Components by Low Plasticity Burnishing (LPB)." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90894.

Full text
Abstract:
Significant progress has been made in the application of low plasticity burnishing (LPB) technology to military engine components, leading to orders of magnitude improvement in damage tolerance. Improved damage tolerance can facilitate inspection, reduce inspection frequency, and improve engine operating margins, all leading to improved military readiness at significantly reduced total costs. Basic understanding of the effects of the different LPB process parameters has evolved, and finite element based compressive residual stress distribution design methodologies have been developed. By incorporating accurate measurement of residual stresses to verify and validate processing, this combined technology leads to a total solutions approach to solve damage problems in engine components. An example of the total solution approach to develop LPB processing of a 1st stage Ti-6Al-4V compressor vane to improve the foreign object damage (FOD) tolerance from 0.002 in. to 0.025 in. is presented. The LPB process, tooling, and control systems are described, including recent developments in real-time process monitoring for quality control. Performed on CNC machine tools, LPB processing is easily adapted to overhaul and manufacturing shop operations with quality assurance procedures meeting military and industry standards, facilitating transition to military depots and manufacturing facilities.
APA, Harvard, Vancouver, ISO, and other styles
10

Mojib, Melody, Rishi Pahuja, M. Ramulu, and Dwayne Arola. "High Cycle Fatigue Behavior of Recycled Additive Manufactured Electron Beam Melted Titanium Ti6Al4V." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24194.

Full text
Abstract:
Abstract Metal Additive Manufacturing (AM) has become a popular method for producing complex and unique geometries, especially gaining traction in the aerospace and medical industries. With the increase in adoption of AM and the high cost of powder, it is critical to understand the effects of powder recycling on part performance to move towards material qualification and certification of affordable printed components. Due to the limitations of the Electron Beam Melting (EBM) process, current as-printed components are susceptible to failure at limits far below wrought metals and further understanding of the material properties and fatigue life is required. In this study, a high strength Titanium alloy, Ti-6Al-4V, is recycled over time and used to print fatigue specimens using the EBM process. Uniaxial High Cycle Fatigue tests have been performed on as-printed and polished cylindrical specimens and the locations of crack initiation and propagation have been determined through the use of a scanning electron microscope. This investigation has shown that the rough surface exterior is far more detrimental to performance life than the powder degradation occurring due to powder reuse. In addition, the effects of the rough surface exterior as a stress concentration is evaluated using the Arola-Ramulu. The following is a preliminary study of the effects powder recycling and surface treatments on EBM Ti-6Al4V fatigue life.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V"

1

Szczepanski, C. J., S. K. Jha, J. M. Larsen, and J. W. Jones. The Role of Microstructure on Various Stages of the Very High Cycle Fatigue Behavior of an a + Beta Titanium Alloy, Ti-6Al-2Sn-4Zr-6Mo (Preprint). Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada553384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography