Journal articles on the topic 'High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High-cycle fatigue; low-cycle fatigue; Ti-6Al-4V.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lanning, D., G. K. Haritos, T. Nicholas, and D. C. Maxwell. "Low-cycle fatigue/high-cycle fatigue interactions in notched Ti-6Al-4V*." Fatigue & Fracture of Engineering Materials & Structures 24, no. 9 (September 28, 2001): 565–77. http://dx.doi.org/10.1046/j.1460-2695.2001.00411.x.
Full textZhang, Peng, Allen Naihui He, Fei Liu, Kaifei Zhang, Junjie Jiang, and David Zhengwen Zhang. "Evaluation of Low Cycle Fatigue Performance of Selective Laser Melted Titanium Alloy Ti–6Al–4V." Metals 9, no. 10 (September 25, 2019): 1041. http://dx.doi.org/10.3390/met9101041.
Full textRitchie, Davidson, Boyce, Campbell, and Roder. "High-cycle fatigue of Ti-6Al-4V." Fatigue & Fracture of Engineering Materials & Structures 22, no. 7 (July 1999): 621–31. http://dx.doi.org/10.1046/j.1460-2695.1999.00194.x.
Full textTang, Luyao, Jiangkun Fan, Hongchao Kou, Bin Tang, and Jinshan Li. "Effect of Oxygen Variation on High Cycle Fatigue Behavior of Ti-6Al-4V Titanium Alloy." Materials 13, no. 17 (September 1, 2020): 3858. http://dx.doi.org/10.3390/ma13173858.
Full textWu, Yan Zeng, Qing Yuan Wang, and Qiao Lin Ouyang. "Influence of Subjection to Plasma Nitriding Surface Modifications on Ultra-High Cycle Fatigue Behavior of Ti-6Al-4V." Applied Mechanics and Materials 105-107 (September 2011): 1731–35. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.1731.
Full textShojima, Kenji, Sabine Weldle, Saburo Okazaki, Masahiro Endo, Dietmar Eifler, and Frank Balle. "Notch Effects in High Cycle Fatigue of Ti-6Al-4V." Materials Science Forum 750 (March 2013): 232–35. http://dx.doi.org/10.4028/www.scientific.net/msf.750.232.
Full textBin Jamal M, Noushad, Aman Kumar, Chebolu Lakshmana Rao, and Cemal Basaran. "Low Cycle Fatigue Life Prediction Using Unified Mechanics Theory in Ti-6Al-4V Alloys." Entropy 22, no. 1 (December 23, 2019): 24. http://dx.doi.org/10.3390/e22010024.
Full textEbara, Ryuichiro. "Grain Size Effect on Low Cycle Fatigue Behavior of High Strength Structural Materials." Solid State Phenomena 258 (December 2016): 269–72. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.269.
Full textRajan, Sidharth, Priti Wanjara, Javad Gholipour, and Abu Syed Kabir. "Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds." Materials 14, no. 11 (June 7, 2021): 3136. http://dx.doi.org/10.3390/ma14113136.
Full textMALL, S. "Effect of predamage from low cycle fatigue on high cycle fatigue strength of Ti-6Al-4V." International Journal of Fatigue 25, no. 9-11 (September 2003): 1109–16. http://dx.doi.org/10.1016/s0142-1123(03)00116-6.
Full textTian, Ren Hui, Qiao Lin Ouyang, and Qing Yuan Wang. "Effect of Plasma Nitriding on Ultra-High Cycle Fatigue Behaviors of Ti-6Al-4V." Advanced Materials Research 295-297 (July 2011): 2386–89. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.2386.
Full textSingla, Anil Kumar, Jagtar Singh, Vishal S. Sharma, Munish Kumar Gupta, Qinghua Song, Dariusz Rozumek, and Grzegorz M. Krolczyk. "Impact of Cryogenic Treatment on HCF and FCP Performance of β-Solution Treated Ti-6Al-4V ELI Biomaterial." Materials 13, no. 3 (January 21, 2020): 500. http://dx.doi.org/10.3390/ma13030500.
Full textDavey, W., M. R. Bache, H. M. Davies, M. Thomas, and I. Bermant-Parr. "Fatigue Performance of the Novel Titanium Alloy TIMETAL®407." MATEC Web of Conferences 321 (2020): 11044. http://dx.doi.org/10.1051/matecconf/202032111044.
Full textHtoo, Aye Thant, Yukio Miyashita, Yuichi Otsuka, Yoshiharu Mutoh, and Shigeo Sakurai. "Kinking Behavior of S-N Curve for Ti6Al4V Alloy Notched Specimen under a Load-Controlled High Cycle Fatigue Test." Materials Science Forum 867 (August 2016): 39–44. http://dx.doi.org/10.4028/www.scientific.net/msf.867.39.
Full textCieśla, M., G. Junak, and A. Marek. "Fatigue Characteristics of Selected Light Metal Alloys." Archives of Metallurgy and Materials 61, no. 1 (March 1, 2016): 271–74. http://dx.doi.org/10.1515/amm-2016-0051.
Full textPark, Taewon, Shankar Mall, and Thedore Nicholas. "Effects of Pre-Damage on HCF Behaviors of Ti-6Al-4V Alloy." International Journal of Modern Physics B 17, no. 08n09 (April 10, 2003): 1994–2000. http://dx.doi.org/10.1142/s0217979203020004.
Full textWang, Rui Feng, You Tang Li, and Hu Ping An. "Low Cycle Fatigue Behaviors of TI-6AL-4V Alloy Controlled by Strain and Stress." Key Engineering Materials 525-526 (November 2012): 441–44. http://dx.doi.org/10.4028/www.scientific.net/kem.525-526.441.
Full textHagiwara, Masuo, Tomonori Kitashima, Satoshi Emura, Satoshi Iwasaki, and Mitsuharu Shiwa. "Very High-Cycle Fatigue and High-Cycle Fatigue of Minor Boron-Modified Ti–6Al–4V Alloy." MATERIALS TRANSACTIONS 60, no. 10 (October 1, 2019): 2213–22. http://dx.doi.org/10.2320/matertrans.mt-m2019169.
Full textAlexander Araújo, José, Gabriel Magalhães Juvenal Almeida, Fábio Comes Castro, and Raphael Araújo Cardoso. "Multiaxial High Cycle Fretting Fatigue." MATEC Web of Conferences 300 (2019): 02002. http://dx.doi.org/10.1051/matecconf/201930002002.
Full textShiina, Takahiro, Takashi Nakamura, and Hiroyuki Oguma. "OS11W0355 Effects of high vacuum environment on high cycle fatigue properties of Ti-6Al-4V alloy." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS11W0355. http://dx.doi.org/10.1299/jsmeatem.2003.2._os11w0355.
Full textRonchei, Camilla, Andrea Carpinteri, Giovanni Fortese, Daniela Scorza, and Sabrina Vantadori. "Fretting High-Cycle Fatigue Assessment through a Multiaxial Critical Plane-Based Criterion in Conjunction with the Taylor’s Point Method." Solid State Phenomena 258 (December 2016): 217–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.217.
Full textKumar, Punit, and Upadrasta Ramamurty. "High cycle fatigue in selective laser melted Ti-6Al-4V." Acta Materialia 194 (August 2020): 305–20. http://dx.doi.org/10.1016/j.actamat.2020.05.041.
Full textYp, Zhang, Dong Cl, Wang Yq, Hou B, Yu C, Fang Wp, and Xu Wh. "High cycle fatigue property of electron beam welded thick section of Ti–6Al–4V plates." Paton Welding Journal 2019, no. 9 (September 28, 2019): 18–22. http://dx.doi.org/10.15407/tpwj2019.09.03.
Full textNamjoshi, S. A., and S. Mall. "Fretting behavior of Ti-6Al-4V under combined high cycle and low cycle fatigue loading." International Journal of Fatigue 23 (2001): 455–61. http://dx.doi.org/10.1016/s0142-1123(01)00143-8.
Full textYang, D., and Z. Liu. "Surface integrity generated with peripheral milling and the effect on low-cycle fatigue performance of aeronautic titanium alloy Ti-6Al-4V." Aeronautical Journal 122, no. 1248 (December 13, 2017): 316–32. http://dx.doi.org/10.1017/aer.2017.136.
Full textWang, Rui Feng, You Tang Li, and Hu Ping An. "Low Cycle Fatigue Life Prediction of Ti-6Al-4V Titanium Alloy under Multi-Axial Non Proportional Cyclic Loading." Advanced Materials Research 668 (March 2013): 814–17. http://dx.doi.org/10.4028/www.scientific.net/amr.668.814.
Full textHosseini, Shabnam, and Mohammad Bagher Limooei. "Investigation of Fatigue Behaviour and Notch Sensitivity of Ti-6Al-4V." Applied Mechanics and Materials 80-81 (July 2011): 7–12. http://dx.doi.org/10.4028/www.scientific.net/amm.80-81.7.
Full textCollins, C. R., F. F. Dear, D. Rugg, and D. Dye. "The Effect of Dissolved Nitrogen on the Fatigue Behavior of Ti-6Al-4V." Metallurgical and Materials Transactions A 52, no. 5 (March 3, 2021): 1596–608. http://dx.doi.org/10.1007/s11661-021-06147-2.
Full textHe, Chao, Yong Jie Liu, and Qing Yuan Wang. "Very High Cycle Fatigue Properties of Welded Joints under High Frequency Loading." Advanced Materials Research 647 (January 2013): 817–21. http://dx.doi.org/10.4028/www.scientific.net/amr.647.817.
Full textUematsu, Yoshihiko, Toshifumi Kakiuchi, Yaodong Han, and Masaki Nakajima. "Proposal of Fatigue Limit Design Curves for Additively Manufactured Ti-6Al-4V in a VHCF Regime Using Specimens with Artificial Defects." Metals 11, no. 6 (June 15, 2021): 964. http://dx.doi.org/10.3390/met11060964.
Full textYp, Zhang, Dong Cl, Wang Yq, Hou B, Yu C, Fang Wp, and Xu Wh. "High cycle fatigue property of electron beam welded thick section of Ti–6Al–4V plates." Avtomatičeskaâ svarka (Kiev) 2019, no. 9 (September 28, 2019): 26–30. http://dx.doi.org/10.15407/as2019.09.03.
Full textDavey, William, Martin Bache, Helen Davies, and Matthew Thomas. "Fatigue Performance of the Novel Titanium Alloy Timetal 407." MATEC Web of Conferences 165 (2018): 04001. http://dx.doi.org/10.1051/matecconf/201816504001.
Full textStinville, J. C., F. Bridier, D. Ponsen, P. Wanjara, and P. Bocher. "High and low cycle fatigue behavior of linear friction welded Ti–6Al–4V." International Journal of Fatigue 70 (January 2015): 278–88. http://dx.doi.org/10.1016/j.ijfatigue.2014.10.002.
Full textKikuchi, Shoichi, Stefan Heinz, Dietmar Eifler, Yuta Nakamura, and Akira Ueno. "Evaluation of Very High Cycle Fatigue Properties of Low Temperature Nitrided Ti-6Al-4V Alloy Using Ultrasonic Testing Technology." Key Engineering Materials 664 (September 2015): 118–27. http://dx.doi.org/10.4028/www.scientific.net/kem.664.118.
Full textPeters, J. O., and R. O. Ritchie. "Foreign-object damage and high-cycle fatigue of Ti–6Al–4V." Materials Science and Engineering: A 319-321 (December 2001): 597–601. http://dx.doi.org/10.1016/s0921-5093(01)00982-0.
Full textJaneček, M., F. Nový, P. Harcuba, J. Stráský, L. Trško, M. Mhaede, and L. Wagner. "The Very High Cycle Fatigue Behaviour of Ti-6Al-4V Alloy." Acta Physica Polonica A 128, no. 4 (October 2015): 497–503. http://dx.doi.org/10.12693/aphyspola.128.497.
Full textCao, X. J., M. R. Sriraman, and Qing Yuan Wang. "Fatigue in Ti-6Al-4V at Very High Cycles." Materials Science Forum 561-565 (October 2007): 259–62. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.259.
Full textHtoo, Aye Thant, Yukio Miyashita, Yuichi Otsuka, Yoshiharu Mutoh, and Shigeo Sakurai. "Notch fatigue behavior of Ti-6Al-4V alloy in transition region between low and high cycle fatigue." International Journal of Fatigue 95 (February 2017): 194–203. http://dx.doi.org/10.1016/j.ijfatigue.2016.10.024.
Full textZhao, Ye Man, Hong Chao Kou, Wei Wu, Ying Deng, Bin Tang, and Jin Shan Li. "Prediction of High Cycle Fatigue Property of Ti-6Al-4V Alloy Using Artificial Neural Network." Materials Science Forum 849 (March 2016): 360–67. http://dx.doi.org/10.4028/www.scientific.net/msf.849.360.
Full textTokaji, K. "High cycle fatigue behaviour of Ti–6Al–4V alloy at elevated temperatures." Scripta Materialia 54, no. 12 (June 2006): 2143–48. http://dx.doi.org/10.1016/j.scriptamat.2006.02.043.
Full textMcEvily, A. J., T. Nakamura, H. Oguma, K. Yamashita, H. Matsunaga, and M. Endo. "On the mechanism of very high cycle fatigue in Ti–6Al–4V." Scripta Materialia 59, no. 11 (December 2008): 1207–9. http://dx.doi.org/10.1016/j.scriptamat.2008.08.012.
Full textLanning, David B., Theodore Nicholas, and George K. Haritos. "Effect of plastic prestrain on high cycle fatigue of Ti–6Al–4V." Mechanics of Materials 34, no. 2 (February 2002): 127–34. http://dx.doi.org/10.1016/s0167-6636(01)00105-3.
Full textCampbell, J. P., and R. O. Ritchie. "Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti–6Al–4V." Engineering Fracture Mechanics 67, no. 3 (October 2000): 209–27. http://dx.doi.org/10.1016/s0013-7944(00)00046-1.
Full textCampbell, J. P., and R. O. Ritchie. "Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti–6Al–4V." Engineering Fracture Mechanics 67, no. 3 (October 2000): 229–49. http://dx.doi.org/10.1016/s0013-7944(00)00047-3.
Full textMITO, Natsuki, and Keiro TOKAJI. "High Cycle Fatigue Behaviour of Ti-6Al-4V Alloy at Elevated Temperatures." Proceedings of Conference of Tokai Branch 2004.53 (2004): 87–88. http://dx.doi.org/10.1299/jsmetokai.2004.53.87.
Full textGünther, J., D. Krewerth, T. Lippmann, S. Leuders, T. Tröster, A. Weidner, H. Biermann, and T. Niendorf. "Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime." International Journal of Fatigue 94 (January 2017): 236–45. http://dx.doi.org/10.1016/j.ijfatigue.2016.05.018.
Full textSimonelli, Marco, Y. Y. Tse, and C. Tuck. "Fracture Mechanisms in High-Cycle Fatigue of Selective Laser Melted Ti-6Al-4V." Key Engineering Materials 627 (September 2014): 125–28. http://dx.doi.org/10.4028/www.scientific.net/kem.627.125.
Full textLu, Kaiju, Li Cheng, and Xuan Chen. "Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy." International Journal of Materials Research 110, no. 4 (April 12, 2019): 307–16. http://dx.doi.org/10.3139/146.111754.
Full textHATANAKA, Kenji, Junji OHGI, and Fumio UENO. "Influence of Heat Treatment on Low-Cycle Fatigue in Ti-6Al-4V Alloy." Journal of the Society of Materials Science, Japan 42, no. 481 (1993): 1153–59. http://dx.doi.org/10.2472/jsms.42.1153.
Full textWu, Min, Takamoto Itoh, Yuuta Shimizu, Hiroshi Nakamura, and Masahiro Takanashi. "Low cycle fatigue life of Ti–6Al–4V alloy under non-proportional loading." International Journal of Fatigue 44 (November 2012): 14–20. http://dx.doi.org/10.1016/j.ijfatigue.2012.06.006.
Full text