Academic literature on the topic 'High-Dimensional Regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High-Dimensional Regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High-Dimensional Regression"
Zheng, Qi, Limin Peng, and Xuming He. "High dimensional censored quantile regression." Annals of Statistics 46, no. 1 (February 2018): 308–43. http://dx.doi.org/10.1214/17-aos1551.
Full textIzbicki, Rafael, and Ann B. Lee. "Converting high-dimensional regression to high-dimensional conditional density estimation." Electronic Journal of Statistics 11, no. 2 (2017): 2800–2831. http://dx.doi.org/10.1214/17-ejs1302.
Full textLan, Wei, Hansheng Wang, and Chih-Ling Tsai. "Testing covariates in high-dimensional regression." Annals of the Institute of Statistical Mathematics 66, no. 2 (June 18, 2013): 279–301. http://dx.doi.org/10.1007/s10463-013-0414-0.
Full textMeinshausen, Nicolai, Lukas Meier, and Peter Bühlmann. "p-Values for High-Dimensional Regression." Journal of the American Statistical Association 104, no. 488 (December 2009): 1671–81. http://dx.doi.org/10.1198/jasa.2009.tm08647.
Full textLi, Ker-Chau. "Nonlinear confounding in high-dimensional regression." Annals of Statistics 25, no. 2 (April 1997): 577–612. http://dx.doi.org/10.1214/aos/1031833665.
Full textLin, Wei, and Jinchi Lv. "High-Dimensional Sparse Additive Hazards Regression." Journal of the American Statistical Association 108, no. 501 (March 2013): 247–64. http://dx.doi.org/10.1080/01621459.2012.746068.
Full textGiraud, Christophe, Sylvie Huet, and Nicolas Verzelen. "High-Dimensional Regression with Unknown Variance." Statistical Science 27, no. 4 (November 2012): 500–518. http://dx.doi.org/10.1214/12-sts398.
Full textSun, Qiang, Hongtu Zhu, Yufeng Liu, and Joseph G. Ibrahim. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression." Journal of the American Statistical Association 110, no. 509 (January 2, 2015): 289–302. http://dx.doi.org/10.1080/01621459.2014.892008.
Full textWang, Siyang, and Hengjian Cui. "GeneralizedFtest for high dimensional linear regression coefficients." Journal of Multivariate Analysis 117 (May 2013): 134–49. http://dx.doi.org/10.1016/j.jmva.2013.02.010.
Full textShen, Xiaotong, Wei Pan, Yunzhang Zhu, and Hui Zhou. "On constrained and regularized high-dimensional regression." Annals of the Institute of Statistical Mathematics 65, no. 5 (January 12, 2013): 807–32. http://dx.doi.org/10.1007/s10463-012-0396-3.
Full textDissertations / Theses on the topic "High-Dimensional Regression"
Fang, Zhou. "Reweighting methods in high dimensional regression." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:26f8541a-9e2d-466a-84aa-e6850c4baba9.
Full textMeier, Lukas Dieter. "High-dimensional regression problems with special structure /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18129.
Full textHashem, Hussein Abdulahman. "Regularized and robust regression methods for high dimensional data." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9197.
Full textAldahmani, Saeed. "High-dimensional linear regression problems via graphical models." Thesis, University of Essex, 2017. http://repository.essex.ac.uk/19207/.
Full textWang, Tao. "Variable selection and dimension reduction in high-dimensional regression." HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1544.
Full textLee, Wai Hong. "Variable selection for high dimensional transformation model." HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1161.
Full textChen, Xiaohui. "Lasso-type sparse regression and high-dimensional Gaussian graphical models." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42271.
Full textChen, Chi. "Variable selection in high dimensional semi-varying coefficient models." HKBU Institutional Repository, 2013. https://repository.hkbu.edu.hk/etd_oa/11.
Full textBreheny, Patrick John Huang Jian. "Regularized methods for high-dimensional and bi-level variable selection." Iowa City : University of Iowa, 2009. http://ir.uiowa.edu/etd/325.
Full textVillegas, Santamaría Mauricio. "Contributions to High-Dimensional Pattern Recognition." Doctoral thesis, Universitat Politècnica de València, 2011. http://hdl.handle.net/10251/10939.
Full textVillegas Santamaría, M. (2011). Contributions to High-Dimensional Pattern Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10939
Palancia
Books on the topic "High-Dimensional Regression"
Chernozhukov, Victor. L1-Penalized Quantile Regression in High Dimensional Sparse Models. Cambridge, MA: Massachusetts Institute of Technology, Dept. of Economics, 2009.
Find full textBelloni, Alexandre. Post-[script l]\2081-penalized estimators in high-dimensional linear regression models. Cambridge, MA: Massachusetts Institute of Technology, Dept. of Economics, 2010.
Find full textPapay, John P. High-school exit examinations and the schooling decisions of teenagers: A multi-dimensional regression-discontinuity analysis. Cambridge, MA: National Bureau of Economic Research, 2011.
Find full textAhmed, S. E. (Syed Ejaz), 1957- editor of compilation, ed. Perspectives on big data analysis: Methodologies and applications : International Workshop on Perspectives on High-Dimensional Data Anlaysis II, May 30-June 1, 2012, Centre de Recherches Mathématiques, University de Montréal, Montréal, Québec, Canada. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textLi, Longhai. Bayesian classification and regression with high dimensional features. 2007, 2007.
Find full textHigh Dimensional Econometrics and Identification. ©2019: World Scientific Publishing Co. Pvt. Ltd., 2019.
Find full textYanagihara, Hirokazu. Consistency of an Information Criterion for High-Dimensional Multivariate Regression. Springer, 2020.
Find full textLarge Sample Covariance Matrices and High-Dimensional Data Analysis. Cambridge University Press, 2015.
Find full textBook chapters on the topic "High-Dimensional Regression"
Giraud, Christophe. "Multivariate Regression." In Introduction to High-Dimensional Statistics, 159–78. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003158745-8.
Full textKooperberg, Charles, and Michael LeBlanc. "Multivariate Nonparametric Regression." In High-Dimensional Data Analysis in Cancer Research, 1–24. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-69765-9_3.
Full textBarber, Rina Foygel, Mathias Drton, and Kean Ming Tan. "Laplace Approximation in High-Dimensional Bayesian Regression." In Statistical Analysis for High-Dimensional Data, 15–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27099-9_2.
Full textvan de Geer, Sara, and Benjamin Stucky. "χ 2-Confidence Sets in High-Dimensional Regression." In Statistical Analysis for High-Dimensional Data, 279–306. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27099-9_13.
Full textAbramovich, Felix, and Vadim Grinshtein. "Model Selection in Gaussian Regression for High-Dimensional Data." In Inverse Problems and High-Dimensional Estimation, 159–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19989-9_4.
Full textHarezlak, Jaroslaw, Eric Tchetgen, and Xiaochun Li. "Variable selection in regression - estimation, prediction,sparsity, inference." In High-Dimensional Data Analysis in Cancer Research, 1–21. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-69765-9_2.
Full textKalina, Jan, and Petra Vidnerová. "On Robust Training of Regression Neural Networks." In Functional and High-Dimensional Statistics and Related Fields, 145–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47756-1_20.
Full textMcConaghy, Trent. "Latent Variable Symbolic Regression for High-Dimensional Inputs." In Genetic Programming Theory and Practice VII, 103–18. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1626-6_7.
Full textReangsephet, Orawan, Supranee Lisawadi, and Syed Ejaz Ahmed. "Weak Signals in High-Dimensional Logistic Regression Models." In Advances in Intelligent Systems and Computing, 121–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21248-3_9.
Full textBecker, C., and R. Fried. "Sliced Inverse Regression for High-dimensional Time Series." In Studies in Classification, Data Analysis, and Knowledge Organization, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55721-7_1.
Full textConference papers on the topic "High-Dimensional Regression"
Kuleshov, Alexander, and Alexander Bernstein. "Regression on High-Dimensional Inputs." In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE, 2016. http://dx.doi.org/10.1109/icdmw.2016.0108.
Full textYoo, Youngjoon, Sangdoo Yun, Hyung Jin Chang, Yiannis Demiris, and Jin Young Choi. "Variational Autoencoded Regression: High Dimensional Regression of Visual Data on Complex Manifold." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.314.
Full textObozinski, Guillaume, Martin J. Wainwright, and Michael I. Jordan. "Union support recovery in high-dimensional multivariate regression." In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797530.
Full textNurunnabi, A. A. M., and Mohammed Nasser. "Regression diagnostics in large and high dimensional data." In 2008 11th International Conference on Computer and Information Technology (ICCIT). IEEE, 2008. http://dx.doi.org/10.1109/iccitechn.2008.4802969.
Full textDrouard, Vincent, Sileye Ba, Georgios Evangelidis, Antoine Deleforge, and Radu Horaud. "Head pose estimation via probabilistic high-dimensional regression." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351683.
Full textLi, Yan, Kevin S. Xu, and Chandan K. Reddy. "Regularized Parametric Regression for High-dimensional Survival Analysis." In Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016. http://dx.doi.org/10.1137/1.9781611974348.86.
Full textYuzbasi, Bahadir, S. Ejaz Ahmed, and Yasin Asar. "L1 Correlation-Based Penalty in High-Dimensional Quantile Regression." In 2018 4th International Conference on Big Data and Information Analytics (BigDIA). IEEE, 2018. http://dx.doi.org/10.1109/bigdia.2018.8632795.
Full textRaytchev, B., Y. Katamoto, M. Koujiba, T. Tamaki, and K. Kaneda. "Ensemble-based local learning for high-dimensional data regression." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900033.
Full textTung, Nguyen Thanh, Joshua Zhexue Huang, Thuy Thi Nguyen, and Imran Khan. "Bias-corrected Quantile Regression Forests for high-dimensional data." In 2014 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2014. http://dx.doi.org/10.1109/icmlc.2014.7009082.
Full textSalemi, Peter, Barry L. Nelson, and Jeremy Staum. "Moving Least Squares regression for high dimensional simulation metamodeling." In 2012 Winter Simulation Conference - (WSC 2012). IEEE, 2012. http://dx.doi.org/10.1109/wsc.2012.6465122.
Full textReports on the topic "High-Dimensional Regression"
Obozinski, Guillaume, Martin J. Wainwright, and Michael I. Jordan. Union Support Recovery in High-Dimensional Multivariate Regression. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada487461.
Full textChernozhukov, Victor, and Alexandre Belloni. L1-Penalized quantile regression in high-dimensional sparse models. Institute for Fiscal Studies, May 2009. http://dx.doi.org/10.1920/wp.cem.2009.1009.
Full textChernozhukov, Victor, and Alexandre Belloni. Post-l1-penalized estimators in high-dimensional linear regression models. Institute for Fiscal Studies, June 2010. http://dx.doi.org/10.1920/wp.cem.2010.1310.
Full textBelloni, Alexandre, Victor Chernozhukov, and Kengo Kato. Robust inference in high-dimensional approximately sparse quantile regression models. IFS, December 2013. http://dx.doi.org/10.1920/wp.cem.2013.7013.
Full textShin, Youngki, Sokbae (Simon) Lee, and Myung Hwan Seo. The lasso for high-dimensional regression with a possible change-point. Institute for Fiscal Studies, May 2014. http://dx.doi.org/10.1920/wp.cem.2014.2614.
Full textChernozhukov, Victor, Kengo Kato, and Alexandre Belloni. Valid post-selection inference in high-dimensional approximately sparse quantile regression models. IFS, December 2014. http://dx.doi.org/10.1920/wp.cem.2014.5314.
Full textPapay, John, John Willett, and Richard Murnane. High-School Exit Examinations and the Schooling Decisions of Teenagers: A Multi-Dimensional Regression-Discontinuity Analysis. Cambridge, MA: National Bureau of Economic Research, June 2011. http://dx.doi.org/10.3386/w17112.
Full text