Journal articles on the topic 'High-Dimensional Regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High-Dimensional Regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zheng, Qi, Limin Peng, and Xuming He. "High dimensional censored quantile regression." Annals of Statistics 46, no. 1 (2018): 308–43. http://dx.doi.org/10.1214/17-aos1551.
Full textIzbicki, Rafael, and Ann B. Lee. "Converting high-dimensional regression to high-dimensional conditional density estimation." Electronic Journal of Statistics 11, no. 2 (2017): 2800–2831. http://dx.doi.org/10.1214/17-ejs1302.
Full textLan, Wei, Hansheng Wang, and Chih-Ling Tsai. "Testing covariates in high-dimensional regression." Annals of the Institute of Statistical Mathematics 66, no. 2 (2013): 279–301. http://dx.doi.org/10.1007/s10463-013-0414-0.
Full textMeinshausen, Nicolai, Lukas Meier, and Peter Bühlmann. "p-Values for High-Dimensional Regression." Journal of the American Statistical Association 104, no. 488 (2009): 1671–81. http://dx.doi.org/10.1198/jasa.2009.tm08647.
Full textLi, Ker-Chau. "Nonlinear confounding in high-dimensional regression." Annals of Statistics 25, no. 2 (1997): 577–612. http://dx.doi.org/10.1214/aos/1031833665.
Full textLin, Wei, and Jinchi Lv. "High-Dimensional Sparse Additive Hazards Regression." Journal of the American Statistical Association 108, no. 501 (2013): 247–64. http://dx.doi.org/10.1080/01621459.2012.746068.
Full textGiraud, Christophe, Sylvie Huet, and Nicolas Verzelen. "High-Dimensional Regression with Unknown Variance." Statistical Science 27, no. 4 (2012): 500–518. http://dx.doi.org/10.1214/12-sts398.
Full textSun, Qiang, Hongtu Zhu, Yufeng Liu, and Joseph G. Ibrahim. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression." Journal of the American Statistical Association 110, no. 509 (2015): 289–302. http://dx.doi.org/10.1080/01621459.2014.892008.
Full textWang, Siyang, and Hengjian Cui. "GeneralizedFtest for high dimensional linear regression coefficients." Journal of Multivariate Analysis 117 (May 2013): 134–49. http://dx.doi.org/10.1016/j.jmva.2013.02.010.
Full textShen, Xiaotong, Wei Pan, Yunzhang Zhu, and Hui Zhou. "On constrained and regularized high-dimensional regression." Annals of the Institute of Statistical Mathematics 65, no. 5 (2013): 807–32. http://dx.doi.org/10.1007/s10463-012-0396-3.
Full textZheng, Zemin, Yingying Fan, and Jinchi Lv. "High dimensional thresholded regression and shrinkage effect." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76, no. 3 (2013): 627–49. http://dx.doi.org/10.1111/rssb.12037.
Full textMaronna, Ricardo A. "Robust Ridge Regression for High-Dimensional Data." Technometrics 53, no. 1 (2011): 44–53. http://dx.doi.org/10.1198/tech.2010.09114.
Full textCook, R. Dennis, Liliana Forzani, and Adam J. Rothman. "Prediction in abundant high-dimensional linear regression." Electronic Journal of Statistics 7 (2013): 3059–88. http://dx.doi.org/10.1214/13-ejs872.
Full textAzriel, D. "The conditionality principle in high-dimensional regression." Biometrika 106, no. 3 (2019): 702–7. http://dx.doi.org/10.1093/biomet/asz015.
Full textRajaratnam, Bala, Steven Roberts, Doug Sparks, and Honglin Yu. "Influence Diagnostics for High-Dimensional Lasso Regression." Journal of Computational and Graphical Statistics 28, no. 4 (2019): 877–90. http://dx.doi.org/10.1080/10618600.2019.1598869.
Full textWager, Stefan, Wenfei Du, Jonathan Taylor, and Robert J. Tibshirani. "High-dimensional regression adjustments in randomized experiments." Proceedings of the National Academy of Sciences 113, no. 45 (2016): 12673–78. http://dx.doi.org/10.1073/pnas.1614732113.
Full textSørensen, Øystein. "hdme: High-Dimensional Regression with Measurement Error." Journal of Open Source Software 4, no. 37 (2019): 1404. http://dx.doi.org/10.21105/joss.01404.
Full textGuo, Jianhua, Jianchang Hu, Bing-Yi Jing, and Zhen Zhang. "Spline-Lasso in High-Dimensional Linear Regression." Journal of the American Statistical Association 111, no. 513 (2016): 288–97. http://dx.doi.org/10.1080/01621459.2015.1005839.
Full textCai, T. Tony, and Zijian Guo. "Accuracy assessment for high-dimensional linear regression." Annals of Statistics 46, no. 4 (2018): 1807–36. http://dx.doi.org/10.1214/17-aos1604.
Full textEl Karoui, Noureddine, Derek Bean, Peter J. Bickel, Chinghway Lim, and Bin Yu. "On robust regression with high-dimensional predictors." Proceedings of the National Academy of Sciences 110, no. 36 (2013): 14557–62. http://dx.doi.org/10.1073/pnas.1307842110.
Full textBean, Derek, Peter J. Bickel, Noureddine El Karoui, and Bin Yu. "Optimal M-estimation in high-dimensional regression." Proceedings of the National Academy of Sciences 110, no. 36 (2013): 14563–68. http://dx.doi.org/10.1073/pnas.1307845110.
Full textAucott, Lorna S., Paul H. Garthwaite, and James Currall. "Regression methods for high dimensional multicollinear data." Communications in Statistics - Simulation and Computation 29, no. 4 (2000): 1021–37. http://dx.doi.org/10.1080/03610910008813652.
Full textAbramovich, Felix, and Vadim Grinshtein. "High-Dimensional Classification by Sparse Logistic Regression." IEEE Transactions on Information Theory 65, no. 5 (2019): 3068–79. http://dx.doi.org/10.1109/tit.2018.2884963.
Full textWang, Tao, and Zhonghua Li. "Outlier detection in high-dimensional regression model." Communications in Statistics - Theory and Methods 46, no. 14 (2017): 6947–58. http://dx.doi.org/10.1080/03610926.2016.1140783.
Full textLue, Heng-Hui, and Bing-Ran You. "High-dimensional regression analysis with treatment comparisons." Computational Statistics 28, no. 3 (2012): 1299–317. http://dx.doi.org/10.1007/s00180-012-0357-6.
Full textFan, Zhaohu, and Matthew Reimherr. "High-dimensional adaptive function-on-scalar regression." Econometrics and Statistics 1 (January 2017): 167–83. http://dx.doi.org/10.1016/j.ecosta.2016.08.001.
Full textGold, David, Johannes Lederer, and Jing Tao. "Inference for high-dimensional instrumental variables regression." Journal of Econometrics 217, no. 1 (2020): 79–111. http://dx.doi.org/10.1016/j.jeconom.2019.09.009.
Full textSpokoiny, Vladimir. "Variance Estimation for High-Dimensional Regression Models." Journal of Multivariate Analysis 82, no. 1 (2002): 111–33. http://dx.doi.org/10.1006/jmva.2001.2023.
Full textDatta, Abhirup, Hui Zou, and Sudipto Banerjee. "Bayesian high-dimensional regression for change point analysis." Statistics and Its Interface 12, no. 2 (2019): 253–64. http://dx.doi.org/10.4310/sii.2019.v12.n2.a6.
Full textWei, Fengrong, and Jian Huang. "Consistent group selection in high-dimensional linear regression." Bernoulli 16, no. 4 (2010): 1369–84. http://dx.doi.org/10.3150/10-bej252.
Full textShen, Weining, and Subhashis Ghosal. "Adaptive Bayesian density regression for high-dimensional data." Bernoulli 22, no. 1 (2016): 396–420. http://dx.doi.org/10.3150/14-bej663.
Full textAlquier, Pierre, and Mohamed Hebiri. "Generalization of constraints for high dimensional regression problems." Statistics & Probability Letters 81, no. 12 (2011): 1760–65. http://dx.doi.org/10.1016/j.spl.2011.07.011.
Full textWang, Lie. "TheL1penalized LAD estimator for high dimensional linear regression." Journal of Multivariate Analysis 120 (September 2013): 135–51. http://dx.doi.org/10.1016/j.jmva.2013.04.001.
Full textObozinski, Guillaume, Martin J. Wainwright, and Michael I. Jordan. "Support union recovery in high-dimensional multivariate regression." Annals of Statistics 39, no. 1 (2011): 1–47. http://dx.doi.org/10.1214/09-aos776.
Full textGu, Yuwen, Jun Fan, Lingchen Kong, Shiqian Ma, and Hui Zou. "ADMM for High-Dimensional Sparse Penalized Quantile Regression." Technometrics 60, no. 3 (2018): 319–31. http://dx.doi.org/10.1080/00401706.2017.1345703.
Full textZhu, Lixing, Baiqi Miao, and Heng Peng. "On Sliced Inverse Regression With High-Dimensional Covariates." Journal of the American Statistical Association 101, no. 474 (2006): 630–43. http://dx.doi.org/10.1198/016214505000001285.
Full textWang, Hansheng. "Forward Regression for Ultra-High Dimensional Variable Screening." Journal of the American Statistical Association 104, no. 488 (2009): 1512–24. http://dx.doi.org/10.1198/jasa.2008.tm08516.
Full textFang, Zhou, and Nicolai Meinshausen. "LASSO Isotone for High-Dimensional Additive Isotonic Regression." Journal of Computational and Graphical Statistics 21, no. 1 (2012): 72–91. http://dx.doi.org/10.1198/jcgs.2011.10095.
Full textZheng, Qi, Colin Gallagher, and K. B. Kulasekera. "Adaptive penalized quantile regression for high dimensional data." Journal of Statistical Planning and Inference 143, no. 6 (2013): 1029–38. http://dx.doi.org/10.1016/j.jspi.2012.12.009.
Full textStrawn, N., A. Armagan, R. Saab, L. Carin, and D. Dunson. "Finite sample posterior concentration in high-dimensional regression." Information and Inference 3, no. 2 (2014): 103–33. http://dx.doi.org/10.1093/imaiai/iau003.
Full textStrawn, N., A. Armagan, R. Saab, L. Carin, and D. Dunson. "Finite sample posterior concentration in high-dimensional regression." Information and Inference 4, no. 1 (2014): 77. http://dx.doi.org/10.1093/imaiai/iau008.
Full textJalali, Shirin, and Arian Maleki. "New approach to Bayesian high-dimensional linear regression." Information and Inference: A Journal of the IMA 7, no. 4 (2018): 605–55. http://dx.doi.org/10.1093/imaiai/iax016.
Full textMukherjee, Rajarshi, Natesh S. Pillai, and Xihong Lin. "Hypothesis testing for high-dimensional sparse binary regression." Annals of Statistics 43, no. 1 (2015): 352–81. http://dx.doi.org/10.1214/14-aos1279.
Full textXu, Min, Minhua Chen, and John Lafferty. "Faithful variable screening for high-dimensional convex regression." Annals of Statistics 44, no. 6 (2016): 2624–60. http://dx.doi.org/10.1214/15-aos1425.
Full textNan, Ying, and Yuhong Yang. "Variable Selection Diagnostics Measures for High-Dimensional Regression." Journal of Computational and Graphical Statistics 23, no. 3 (2014): 636–56. http://dx.doi.org/10.1080/10618600.2013.829780.
Full textAndo, Tomohiro, and Ker-Chau Li. "A Model-Averaging Approach for High-Dimensional Regression." Journal of the American Statistical Association 109, no. 505 (2014): 254–65. http://dx.doi.org/10.1080/01621459.2013.838168.
Full textDatta, Abhirup, and Hui Zou. "CoCoLasso for high-dimensional error-in-variables regression." Annals of Statistics 45, no. 6 (2017): 2400–2426. http://dx.doi.org/10.1214/16-aos1527.
Full textLozano, Aurélie C., Nicolai Meinshausen, and Eunho Yang. "Minimum Distance Lasso for robust high-dimensional regression." Electronic Journal of Statistics 10, no. 1 (2016): 1296–340. http://dx.doi.org/10.1214/16-ejs1136.
Full textGuha, Subharup, and Veerabhadran Baladandayuthapani. "A nonparametric Bayesian technique for high-dimensional regression." Electronic Journal of Statistics 10, no. 2 (2016): 3374–424. http://dx.doi.org/10.1214/16-ejs1184.
Full textCook, R. Dennis, and Liliana Forzani. "Partial least squares prediction in high-dimensional regression." Annals of Statistics 47, no. 2 (2019): 884–908. http://dx.doi.org/10.1214/18-aos1681.
Full text