To see the other types of publications on this topic, follow the link: High-Dimensional Regression.

Journal articles on the topic 'High-Dimensional Regression'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'High-Dimensional Regression.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zheng, Qi, Limin Peng, and Xuming He. "High dimensional censored quantile regression." Annals of Statistics 46, no. 1 (2018): 308–43. http://dx.doi.org/10.1214/17-aos1551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Izbicki, Rafael, and Ann B. Lee. "Converting high-dimensional regression to high-dimensional conditional density estimation." Electronic Journal of Statistics 11, no. 2 (2017): 2800–2831. http://dx.doi.org/10.1214/17-ejs1302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lan, Wei, Hansheng Wang, and Chih-Ling Tsai. "Testing covariates in high-dimensional regression." Annals of the Institute of Statistical Mathematics 66, no. 2 (2013): 279–301. http://dx.doi.org/10.1007/s10463-013-0414-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meinshausen, Nicolai, Lukas Meier, and Peter Bühlmann. "p-Values for High-Dimensional Regression." Journal of the American Statistical Association 104, no. 488 (2009): 1671–81. http://dx.doi.org/10.1198/jasa.2009.tm08647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Ker-Chau. "Nonlinear confounding in high-dimensional regression." Annals of Statistics 25, no. 2 (1997): 577–612. http://dx.doi.org/10.1214/aos/1031833665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Wei, and Jinchi Lv. "High-Dimensional Sparse Additive Hazards Regression." Journal of the American Statistical Association 108, no. 501 (2013): 247–64. http://dx.doi.org/10.1080/01621459.2012.746068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giraud, Christophe, Sylvie Huet, and Nicolas Verzelen. "High-Dimensional Regression with Unknown Variance." Statistical Science 27, no. 4 (2012): 500–518. http://dx.doi.org/10.1214/12-sts398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Qiang, Hongtu Zhu, Yufeng Liu, and Joseph G. Ibrahim. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression." Journal of the American Statistical Association 110, no. 509 (2015): 289–302. http://dx.doi.org/10.1080/01621459.2014.892008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Siyang, and Hengjian Cui. "GeneralizedFtest for high dimensional linear regression coefficients." Journal of Multivariate Analysis 117 (May 2013): 134–49. http://dx.doi.org/10.1016/j.jmva.2013.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Xiaotong, Wei Pan, Yunzhang Zhu, and Hui Zhou. "On constrained and regularized high-dimensional regression." Annals of the Institute of Statistical Mathematics 65, no. 5 (2013): 807–32. http://dx.doi.org/10.1007/s10463-012-0396-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zheng, Zemin, Yingying Fan, and Jinchi Lv. "High dimensional thresholded regression and shrinkage effect." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76, no. 3 (2013): 627–49. http://dx.doi.org/10.1111/rssb.12037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Maronna, Ricardo A. "Robust Ridge Regression for High-Dimensional Data." Technometrics 53, no. 1 (2011): 44–53. http://dx.doi.org/10.1198/tech.2010.09114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cook, R. Dennis, Liliana Forzani, and Adam J. Rothman. "Prediction in abundant high-dimensional linear regression." Electronic Journal of Statistics 7 (2013): 3059–88. http://dx.doi.org/10.1214/13-ejs872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Azriel, D. "The conditionality principle in high-dimensional regression." Biometrika 106, no. 3 (2019): 702–7. http://dx.doi.org/10.1093/biomet/asz015.

Full text
Abstract:
Summary Consider a high-dimensional linear regression problem, where the number of covariates is larger than the number of observations and the interest is in estimating the conditional variance of the response variable given the covariates. A conditional and an unconditional framework are considered, where conditioning is with respect to the covariates, which are ancillary to the parameter of interest. In recent papers, a consistent estimator was developed in the unconditional framework when the marginal distribution of the covariates is normal with known mean and variance. In the present wor
APA, Harvard, Vancouver, ISO, and other styles
15

Rajaratnam, Bala, Steven Roberts, Doug Sparks, and Honglin Yu. "Influence Diagnostics for High-Dimensional Lasso Regression." Journal of Computational and Graphical Statistics 28, no. 4 (2019): 877–90. http://dx.doi.org/10.1080/10618600.2019.1598869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wager, Stefan, Wenfei Du, Jonathan Taylor, and Robert J. Tibshirani. "High-dimensional regression adjustments in randomized experiments." Proceedings of the National Academy of Sciences 113, no. 45 (2016): 12673–78. http://dx.doi.org/10.1073/pnas.1614732113.

Full text
Abstract:
We study the problem of treatment effect estimation in randomized experiments with high-dimensional covariate information and show that essentially any risk-consistent regression adjustment can be used to obtain efficient estimates of the average treatment effect. Our results considerably extend the range of settings where high-dimensional regression adjustments are guaranteed to provide valid inference about the population average treatment effect. We then propose cross-estimation, a simple method for obtaining finite-sample–unbiased treatment effect estimates that leverages high-dimensional
APA, Harvard, Vancouver, ISO, and other styles
17

Sørensen, Øystein. "hdme: High-Dimensional Regression with Measurement Error." Journal of Open Source Software 4, no. 37 (2019): 1404. http://dx.doi.org/10.21105/joss.01404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Guo, Jianhua, Jianchang Hu, Bing-Yi Jing, and Zhen Zhang. "Spline-Lasso in High-Dimensional Linear Regression." Journal of the American Statistical Association 111, no. 513 (2016): 288–97. http://dx.doi.org/10.1080/01621459.2015.1005839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cai, T. Tony, and Zijian Guo. "Accuracy assessment for high-dimensional linear regression." Annals of Statistics 46, no. 4 (2018): 1807–36. http://dx.doi.org/10.1214/17-aos1604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

El Karoui, Noureddine, Derek Bean, Peter J. Bickel, Chinghway Lim, and Bin Yu. "On robust regression with high-dimensional predictors." Proceedings of the National Academy of Sciences 110, no. 36 (2013): 14557–62. http://dx.doi.org/10.1073/pnas.1307842110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bean, Derek, Peter J. Bickel, Noureddine El Karoui, and Bin Yu. "Optimal M-estimation in high-dimensional regression." Proceedings of the National Academy of Sciences 110, no. 36 (2013): 14563–68. http://dx.doi.org/10.1073/pnas.1307845110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aucott, Lorna S., Paul H. Garthwaite, and James Currall. "Regression methods for high dimensional multicollinear data." Communications in Statistics - Simulation and Computation 29, no. 4 (2000): 1021–37. http://dx.doi.org/10.1080/03610910008813652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abramovich, Felix, and Vadim Grinshtein. "High-Dimensional Classification by Sparse Logistic Regression." IEEE Transactions on Information Theory 65, no. 5 (2019): 3068–79. http://dx.doi.org/10.1109/tit.2018.2884963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Tao, and Zhonghua Li. "Outlier detection in high-dimensional regression model." Communications in Statistics - Theory and Methods 46, no. 14 (2017): 6947–58. http://dx.doi.org/10.1080/03610926.2016.1140783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lue, Heng-Hui, and Bing-Ran You. "High-dimensional regression analysis with treatment comparisons." Computational Statistics 28, no. 3 (2012): 1299–317. http://dx.doi.org/10.1007/s00180-012-0357-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fan, Zhaohu, and Matthew Reimherr. "High-dimensional adaptive function-on-scalar regression." Econometrics and Statistics 1 (January 2017): 167–83. http://dx.doi.org/10.1016/j.ecosta.2016.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gold, David, Johannes Lederer, and Jing Tao. "Inference for high-dimensional instrumental variables regression." Journal of Econometrics 217, no. 1 (2020): 79–111. http://dx.doi.org/10.1016/j.jeconom.2019.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Spokoiny, Vladimir. "Variance Estimation for High-Dimensional Regression Models." Journal of Multivariate Analysis 82, no. 1 (2002): 111–33. http://dx.doi.org/10.1006/jmva.2001.2023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Datta, Abhirup, Hui Zou, and Sudipto Banerjee. "Bayesian high-dimensional regression for change point analysis." Statistics and Its Interface 12, no. 2 (2019): 253–64. http://dx.doi.org/10.4310/sii.2019.v12.n2.a6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wei, Fengrong, and Jian Huang. "Consistent group selection in high-dimensional linear regression." Bernoulli 16, no. 4 (2010): 1369–84. http://dx.doi.org/10.3150/10-bej252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shen, Weining, and Subhashis Ghosal. "Adaptive Bayesian density regression for high-dimensional data." Bernoulli 22, no. 1 (2016): 396–420. http://dx.doi.org/10.3150/14-bej663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alquier, Pierre, and Mohamed Hebiri. "Generalization of constraints for high dimensional regression problems." Statistics & Probability Letters 81, no. 12 (2011): 1760–65. http://dx.doi.org/10.1016/j.spl.2011.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Lie. "TheL1penalized LAD estimator for high dimensional linear regression." Journal of Multivariate Analysis 120 (September 2013): 135–51. http://dx.doi.org/10.1016/j.jmva.2013.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Obozinski, Guillaume, Martin J. Wainwright, and Michael I. Jordan. "Support union recovery in high-dimensional multivariate regression." Annals of Statistics 39, no. 1 (2011): 1–47. http://dx.doi.org/10.1214/09-aos776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gu, Yuwen, Jun Fan, Lingchen Kong, Shiqian Ma, and Hui Zou. "ADMM for High-Dimensional Sparse Penalized Quantile Regression." Technometrics 60, no. 3 (2018): 319–31. http://dx.doi.org/10.1080/00401706.2017.1345703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhu, Lixing, Baiqi Miao, and Heng Peng. "On Sliced Inverse Regression With High-Dimensional Covariates." Journal of the American Statistical Association 101, no. 474 (2006): 630–43. http://dx.doi.org/10.1198/016214505000001285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Hansheng. "Forward Regression for Ultra-High Dimensional Variable Screening." Journal of the American Statistical Association 104, no. 488 (2009): 1512–24. http://dx.doi.org/10.1198/jasa.2008.tm08516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fang, Zhou, and Nicolai Meinshausen. "LASSO Isotone for High-Dimensional Additive Isotonic Regression." Journal of Computational and Graphical Statistics 21, no. 1 (2012): 72–91. http://dx.doi.org/10.1198/jcgs.2011.10095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zheng, Qi, Colin Gallagher, and K. B. Kulasekera. "Adaptive penalized quantile regression for high dimensional data." Journal of Statistical Planning and Inference 143, no. 6 (2013): 1029–38. http://dx.doi.org/10.1016/j.jspi.2012.12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Strawn, N., A. Armagan, R. Saab, L. Carin, and D. Dunson. "Finite sample posterior concentration in high-dimensional regression." Information and Inference 3, no. 2 (2014): 103–33. http://dx.doi.org/10.1093/imaiai/iau003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Strawn, N., A. Armagan, R. Saab, L. Carin, and D. Dunson. "Finite sample posterior concentration in high-dimensional regression." Information and Inference 4, no. 1 (2014): 77. http://dx.doi.org/10.1093/imaiai/iau008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jalali, Shirin, and Arian Maleki. "New approach to Bayesian high-dimensional linear regression." Information and Inference: A Journal of the IMA 7, no. 4 (2018): 605–55. http://dx.doi.org/10.1093/imaiai/iax016.

Full text
Abstract:
Abstract Consider the problem of estimating parameters $X^n \in \mathbb{R}^n $, from $m$ response variables $Y^m = AX^n+Z^m$, under the assumption that the distribution of $X^n$ is known. Lack of computationally feasible algorithms that employ generic prior distributions and provide a good estimate of $X^n$ has limited the set of distributions researchers use to model the data. To address this challenge, in this article, a new estimation scheme named quantized maximum a posteriori (Q-MAP) is proposed. The new method has the following properties: (i) In the noiseless setting, it has similaritie
APA, Harvard, Vancouver, ISO, and other styles
43

Mukherjee, Rajarshi, Natesh S. Pillai, and Xihong Lin. "Hypothesis testing for high-dimensional sparse binary regression." Annals of Statistics 43, no. 1 (2015): 352–81. http://dx.doi.org/10.1214/14-aos1279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, Min, Minhua Chen, and John Lafferty. "Faithful variable screening for high-dimensional convex regression." Annals of Statistics 44, no. 6 (2016): 2624–60. http://dx.doi.org/10.1214/15-aos1425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nan, Ying, and Yuhong Yang. "Variable Selection Diagnostics Measures for High-Dimensional Regression." Journal of Computational and Graphical Statistics 23, no. 3 (2014): 636–56. http://dx.doi.org/10.1080/10618600.2013.829780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ando, Tomohiro, and Ker-Chau Li. "A Model-Averaging Approach for High-Dimensional Regression." Journal of the American Statistical Association 109, no. 505 (2014): 254–65. http://dx.doi.org/10.1080/01621459.2013.838168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Datta, Abhirup, and Hui Zou. "CoCoLasso for high-dimensional error-in-variables regression." Annals of Statistics 45, no. 6 (2017): 2400–2426. http://dx.doi.org/10.1214/16-aos1527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lozano, Aurélie C., Nicolai Meinshausen, and Eunho Yang. "Minimum Distance Lasso for robust high-dimensional regression." Electronic Journal of Statistics 10, no. 1 (2016): 1296–340. http://dx.doi.org/10.1214/16-ejs1136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Guha, Subharup, and Veerabhadran Baladandayuthapani. "A nonparametric Bayesian technique for high-dimensional regression." Electronic Journal of Statistics 10, no. 2 (2016): 3374–424. http://dx.doi.org/10.1214/16-ejs1184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cook, R. Dennis, and Liliana Forzani. "Partial least squares prediction in high-dimensional regression." Annals of Statistics 47, no. 2 (2019): 884–908. http://dx.doi.org/10.1214/18-aos1681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!