Academic literature on the topic 'High dose rate brachytherapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High dose rate brachytherapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High dose rate brachytherapy"
Herskovic, Arnold M. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 17 (January 1989): 106. http://dx.doi.org/10.1016/0360-3016(89)90619-6.
Full textPetereit, Daniel G., and Jack F. Fowler. "High-dose-rate brachytherapy—." International Journal of Radiation Oncology*Biology*Physics 55, no. 5 (April 2003): 1159–61. http://dx.doi.org/10.1016/s0360-3016(02)04526-1.
Full textSpeiser, Burton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 19 (January 1990): 115. http://dx.doi.org/10.1016/0360-3016(90)90638-z.
Full textSpeiser, Burton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 21 (January 1991): 103. http://dx.doi.org/10.1016/0360-3016(91)90418-4.
Full textSpeiser, Burton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 24 (January 1992): 110–11. http://dx.doi.org/10.1016/0360-3016(92)90115-x.
Full textSpeiser, Borton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 27 (1993): 116. http://dx.doi.org/10.1016/0360-3016(93)90609-y.
Full textItami, Jun. "Modern development of high-dose-rate brachytherapy." Japanese Journal of Clinical Oncology 50, no. 5 (March 5, 2020): 490–501. http://dx.doi.org/10.1093/jjco/hyaa029.
Full textNag, Subir, and Kenneth S. Hu. "Intraoperative high-dose-rate brachytherapy." Surgical Oncology Clinics of North America 12, no. 4 (October 2003): 1079–97. http://dx.doi.org/10.1016/s1055-3207(03)00092-9.
Full textAlberti, Winfried E. "Endobronchial high dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 25, no. 4 (March 1993): 753–55. http://dx.doi.org/10.1016/0360-3016(93)90024-p.
Full textMartinez, Alvaro A., Jeffrey Demanes, Carlos Vargas, Lionel Schour, Michel Ghilezan, and Gary S. Gustafson. "High-Dose-Rate Prostate Brachytherapy." American Journal of Clinical Oncology 33, no. 5 (October 2010): 481–88. http://dx.doi.org/10.1097/coc.0b013e3181b9cd2f.
Full textDissertations / Theses on the topic "High dose rate brachytherapy"
Morén, Björn. "Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy." Licentiate thesis, Linköpings universitet, Optimeringslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154966.
Full textKrastel, Dorothee. "Intrakavitäre High-Dose-Rate-Brachytherapie zur Behandlung von Nasentumoren beim Hund." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38005.
Full textCui, Songye, and Songye Cui. "Multi-criteria optimization algorithms for high dose rate brachytherapy." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37180.
Full textL’objectif général de cette thèse est d’utiliser les connaissances en physique de la radiation, en programmation informatique et en équipement informatique à la haute pointe de la technologie pour améliorer les traitements du cancer. En particulier, l’élaboration d’un plan de traitement en radiothérapie peut être complexe et dépendant de l’utilisateur. Cette thèse a pour objectif de simplifier la planification de traitement actuelle en curiethérapie de la prostate à haut débit de dose (HDR). Ce projet a débuté à partir d’un algorithme de planification inverse largement utilisé, la planification de traitement inverse par recuit simulé (IPSA). Pour aboutir à un algorithme de planification inverse ultra-rapide et automatisé, trois algorithmes d’optimisation multicritères (MCO) ont été mis en oeuvre. Suite à la génération d’une banque de plans de traitement ayant divers compromis avec les algorithmes MCO, un plan de qualité a été automatiquement sélectionné. Dans la première étude, un algorithme MCO a été introduit pour explorer les frontières de Pareto en curiethérapie HDR. L’algorithme s’inspire de la fonctionnalité MCO intégrée au système Raystation (RaySearch Laboratories, Stockholm, Suède). Pour chaque cas, 300 plans de traitement ont été générés en série pour obtenir une approximation uniforme de la frontière de Pareto. Chaque plan optimal de Pareto a été calculé avec IPSA et chaque nouveau plan a été ajouté à la portion de la frontière de Pareto où la distance entre sa limite supérieure et sa limite inférieure était la plus grande. Dans une étude complémentaire, ou dans la seconde étude, un algorithme MCO basé sur la connaissance (kMCO) a été mis en oeuvre pour réduire le temps de calcul de l’algorithme MCO. Pour ce faire, deux stratégies ont été mises en oeuvre : une prédiction de l’espace des solutions cliniquement acceptables à partir de modèles de régression et d’un calcul parallèle des plans de traitement avec deux processeurs à six coeurs. En conséquence, une banque de plans de traitement de petite taille (14) a été générée et un plan a été sélectionné en tant que plan kMCO. L’efficacité de la planification et de la performance dosimétrique ont été comparées entre les plans approuvés par le médecin et les plans kMCO pour 236 cas. La troisième et dernière étude de cette thèse a été réalisée en coopération avec Cédric Bélanger. Un algorithme MCO (gMCO) basé sur l’utilisation d’un environnement de développement compatible avec les cartes graphiques a été mis en oeuvre pour accélérer davantage le calcul. De plus, un algorithme d’optimisation quasi-Newton a été implémenté pour remplacer le recuit simulé dans la première et la deuxième étude. De cette manière, un millier de plans de traitement avec divers compromis et équivalents à ceux générés par IPSA ont été calculés en parallèle. Parmi la banque de plans de traitement généré par l’agorithme gMCO, un plan a été sélectionné (plan gMCO). Le temps de planification et les résultats dosimétriques ont été comparés entre les plans approuvés par le médecin et les plans gMCO pour 457 cas. Une comparaison à grande échelle avec les plans approuvés par les radio-oncologues montre que notre dernier algorithme MCO (gMCO) peut améliorer l’efficacité de la planification du traitement (de quelques minutes à 9:4 s) ainsi que la qualité dosimétrique des plans de traitements (des plans passant de 92:6% à 99:8% selon les critères dosimétriques du groupe de traitement oncologique par radiation (RTOG)). Avec trois algorithmes MCO mis en oeuvre, cette thèse représente un effort soutenu pour développer un algorithme de planification inverse ultra-rapide, automatique et robuste en curiethérapie HDR.
The overall purpose of this thesis is to use the knowledge of radiation physics, computer programming and computing hardware to improve cancer treatments. In particular, designing a treatment plan in radiation therapy can be complex and user-dependent, and this thesis aims to simplify current treatment planning in high dose rate (HDR) prostate brachytherapy. This project was started from a widely used inverse planning algorithm, Inverse Planning Simulated Annealing (IPSA). In order to eventually lead to an ultra-fast and automatic inverse planning algorithm, three multi-criteria optimization (MCO) algorithms were implemented. With MCO algorithms, a desirable plan was selected after computing a set of treatment plans with various trade-offs. In the first study, an MCO algorithm was introduced to explore the Pareto surfaces in HDR brachytherapy. The algorithm was inspired by the MCO feature integrated in the Raystation system (RaySearch Laboratories, Stockholm, Sweden). For each case, 300 treatment plans were serially generated to obtain a uniform approximation of the Pareto surface. Each Pareto optimal plan was computed with IPSA, and each new plan was added to the Pareto surface portion where the distance between its upper boundary and its lower boundary was the largest. In a companion study, or the second study, a knowledge-based MCO (kMCO) algorithm was implemented to shorten the computation time of the MCO algorithm. To achieve this, two strategies were implemented: a prediction of clinical relevant solution space with previous knowledge, and a parallel computation of treatment plans with two six-core CPUs. As a result, a small size (14) plan dataset was created, and one plan was selected as the kMCO plan. The planning efficiency and the dosimetric performance were compared between the physician-approved plans and the kMCO plans for 236 cases. The third and final study of this thesis was conducted in cooperation with Cédric Bélanger. A graphics processing units (GPU) based MCO (gMCO) algorithm was implemented to further speed up the computation. Furthermore, a quasi-Newton optimization engine was implemented to replace simulated annealing in the first and the second study. In this way, one thousand IPSA equivalent treatment plans with various trade-offs were computed in parallel. One plan was selected as the gMCO plan from the calculated plan dataset. The planning time and the dosimetric results were compared between the physician-approved plans and the gMCO plans for 457 cases. A large-scale comparison against the physician-approved plans shows that our latest MCO algorithm (gMCO) can result in an improved treatment planning efficiency (from minutes to 9:4 s) as well as an improved treatment plan dosimetric quality (Radiation Therapy Oncology Group (RTOG) acceptance rate from 92.6% to 99.8%). With three implemented MCO algorithms, this thesis represents a sustained effort to develop an ultra-fast, automatic and robust inverse planning algorithm in HDR brachytherapy.
The overall purpose of this thesis is to use the knowledge of radiation physics, computer programming and computing hardware to improve cancer treatments. In particular, designing a treatment plan in radiation therapy can be complex and user-dependent, and this thesis aims to simplify current treatment planning in high dose rate (HDR) prostate brachytherapy. This project was started from a widely used inverse planning algorithm, Inverse Planning Simulated Annealing (IPSA). In order to eventually lead to an ultra-fast and automatic inverse planning algorithm, three multi-criteria optimization (MCO) algorithms were implemented. With MCO algorithms, a desirable plan was selected after computing a set of treatment plans with various trade-offs. In the first study, an MCO algorithm was introduced to explore the Pareto surfaces in HDR brachytherapy. The algorithm was inspired by the MCO feature integrated in the Raystation system (RaySearch Laboratories, Stockholm, Sweden). For each case, 300 treatment plans were serially generated to obtain a uniform approximation of the Pareto surface. Each Pareto optimal plan was computed with IPSA, and each new plan was added to the Pareto surface portion where the distance between its upper boundary and its lower boundary was the largest. In a companion study, or the second study, a knowledge-based MCO (kMCO) algorithm was implemented to shorten the computation time of the MCO algorithm. To achieve this, two strategies were implemented: a prediction of clinical relevant solution space with previous knowledge, and a parallel computation of treatment plans with two six-core CPUs. As a result, a small size (14) plan dataset was created, and one plan was selected as the kMCO plan. The planning efficiency and the dosimetric performance were compared between the physician-approved plans and the kMCO plans for 236 cases. The third and final study of this thesis was conducted in cooperation with Cédric Bélanger. A graphics processing units (GPU) based MCO (gMCO) algorithm was implemented to further speed up the computation. Furthermore, a quasi-Newton optimization engine was implemented to replace simulated annealing in the first and the second study. In this way, one thousand IPSA equivalent treatment plans with various trade-offs were computed in parallel. One plan was selected as the gMCO plan from the calculated plan dataset. The planning time and the dosimetric results were compared between the physician-approved plans and the gMCO plans for 457 cases. A large-scale comparison against the physician-approved plans shows that our latest MCO algorithm (gMCO) can result in an improved treatment planning efficiency (from minutes to 9:4 s) as well as an improved treatment plan dosimetric quality (Radiation Therapy Oncology Group (RTOG) acceptance rate from 92.6% to 99.8%). With three implemented MCO algorithms, this thesis represents a sustained effort to develop an ultra-fast, automatic and robust inverse planning algorithm in HDR brachytherapy.
Poon, Emily Sau Chee. "Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86632.
Full textIn this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities.
We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the iridium source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%.
Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing. The scatter dose is again adjusted using our scatter correction technique. The algorithm was tested using phantoms and actual patient plans for head-and-neck, esophagus, and MammoSite breast brachytherapy. Although the method fails to correct for the changes in lateral scatter introduced by inhomogeneities, it is a major improvement over TG-43 and is sufficiently fast for clinical use.
En curiethérapies à haut débit de dose, la dose aux patients est évaluée selon le protocole AAPM Task-Group 43 (TG43), qui utilise des paramètres dosimétriques obtenues avec une source dans l'eau. Cependant, le patient, l'applicateur et le contraste ont des propriétés radiologiques différentes de l'eau; ces inhomogénéités sont donc négligées dans TG43.
Dans ce travail, nous utilisons le programme Monte Carlo (MC) GEANT4 pour évaluer les propriétés dosimétriques d'un applicateur rectal muni d'un blindage radio-protecteur et d'un ballon intra-cavitaire. Ces résultats sont confirmés par des mesures d'une chambre d'ionisation et des films GAFCHROMIC EBT. Une étude des calculs de dose a été faite avec le programme PTRAN_CT avec l'aide des images scanner de 40 patients de cancer rectal. Ceci a conduit au développement de BrachyGUI, un programme de planification de curiethérapie, capable de traiter les données DICOM-RT des patients et générer les paramètres d'entrée pour PTRAN_CT. BrachyGUI dispose d'outils de calcul, d'extraction et d'analyse de dose.
Nous proposons une nouvelle méthode de calcul qui tient compte des effets de diffusion au voisinage des interfaces tissus-air. Cette méthode calcule séparément la dose due aux photons primaires et diffusés, ensuite la composante diffusée est ajustée par un paramètre extrait des calculs MC incluant les contours du patient, la source et sa position. Nos résultats s'accordent avec une incertitude inferieure à 1% avec les calculs de dose à la surface et dans la cible effectués avec PTRAN_CT pour 18 patients en curiethérapie du sein.
Enfin, nous avons conçu une méthode analytique de calcul de dose qui incorpore l'atténuation et la diffusion des photons, et qui est basée sur les chemins radiologiques déterminées par traçage des trajectoires. Cet algorithme est validé par l'utilisation de fantômes, des données de patients traités pour divers cancers (oesophage, tête et cou), et par la curiethérapie MammoSite du sein. Bien que cette méthode ne reproduise pas bien les diffusions latérales induites par les inhomogénéités, elle représente une amélioration majeure par-rapport-à TG43 et est rapide pour une implémentation clinique.
Leung, To-wai. "High-dose-rate intracavitary brachytherapy in the treatment of nasopharyngeal carcinoma." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557315.
Full text梁道偉 and To-wai Leung. "High-dose-rate intracavitary brachytherapy in the treatment of nasopharyngeal carcinoma." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557315.
Full textHowie, Andrew Gordon, and howie andrew@gmail com. "Improving high dose rate and pulsed dose rate prostate brachytherapy - alternative prostate definition and treatment delivery verification methods." RMIT University. Applied Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091007.091553.
Full textWahlgren, Thomas. "High dose rate brachytherapy boost for localized prostate cancer : clinical and patient-reported outcomes/." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-931-9/.
Full textAsgharizadeh, Saeid. "Patient specific quality assurance tool for high dose rate brachytherapy for rectal cancer patients." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=122975.
Full textEn radiothérapie, la détermination de la dose exacte et la livraison de dose précise de la tumeur sont directement associés à de meilleurs résultats de traitement en termes de contrôle de la tumeur et à une baisse des complications de thérapie post- irradiation. Dans le passé, le film dosimétrie a été développé dans un outil puissant pour la radiothérapie externe de faisceau (CDE) vérification du traitement et de l'assurance de la qualité. L'objectif de cette thèse est le développement et l'application clinique de la BAI - 3 GafChromicTM modèle de film spécifique au patient d'assurance de la qualité basé (AQ) procédures en Brachythérapie. L'absence de mesures cliniques et les procédures d'assurance qualité spécifiques au patient (similaire à celle de la livraison IMRT) en haute curiethérapie de débit de dose (HDRBT) étaient la motivation pour améliorer à la fois le programme d'AQ de livraison et la sécurité des patients pendant les procédures de Brachythérapie.Outils d'assurance qualité spécifiques au patient pour curiethérapie préopératoire dans le cancer du rectum développé dans cette thèse utilise un système de dosimétrie du film Radiochromique avec la méthode d'évaluation de la fonction gamma pour comparer des distributions de dose calculées et mesurées. Nous avons également créé un fantôme dédié pour un applicateur de curiethérapie utilisé pour le traitement des patients atteints de cancer du rectum, ce qui nous a permis de comparer les distributions de dose calculées à celles mesurées dans les régions de gradient doses élevées et faibles. A partir de même critère de passage utilisé pour externe IMRT QA (3 %, 3 mm), en passant critères pour les régions hautes et basses doses ont ensuite été discuté. Enfin, nous avons étudié la sensibilité du système d'assurance qualité à la source des erreurs de position en introduisant des erreurs intentionnelles et contrôlées sur les plans de patients sélectionnés.Les résultats présentés dans cette thèse ont démontré que l'AQ sur film Radiochromique dosimétrie pour curiethérapie peut être utilisée non seulement pour l'assurance qualité spécifique au patient, mais comme une partie du processus de mise en service et AQ périodique ainsi.
Zlobec, Inti. "A predictive model of rectal tumour response to pre-operative high-dose rate endorectal brachytherapy /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103189.
Full textBooks on the topic "High dose rate brachytherapy"
International Symposium: High Dose Rate Afterloading in the Treatment of Cancer of the Uterus (1986 Giessen, Germany). High dose rate afterloading in the treatment of cancer of the uterus, breast and rectum: Proceedings of the International Symposium: High Dose Rate Afterloading in the Treatment of Cancer of the Uterus, held at Giessen, 10-12 July, 1986. München: Urban & Schwarzenberg, 1988.
Find full textICRP Publication 97 Prevention of High-dose-rate Brachytherapy Accidents (International Commission on Radiological Protection). Elsevier, 2006.
Find full textHorton, Patrick, Deborah J. Peet, David G. Sutton, and Colin J. Martin. Radiotherapy: brachytherapy and unsealed radionuclide therapy. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0020.
Full textVahrson, H. High Dose Rate Afterloading in the Treatment of Cancer in the Uterus Breast and Rectum (Supplements to Strahlentherapie Und Onkologie, Vol 82). Urban & Schwarzenberg, 1988.
Find full textLee, Christoph I. Low-Dose CT Screening for Lung Cancer. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190223700.003.0044.
Full textHoskin, Peter. Penis. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199696567.003.0012.
Full textCassidy, Jim, Donald Bissett, Roy A. J. Spence OBE, Miranda Payne, and Gareth Morris-Stiff. Principles of chemotherapy. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199689842.003.0005.
Full textMeyrier, Alain, and Patrick Niaudet. Primary focal segmental glomerulosclerosis. Edited by Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0058_update_001.
Full textBook chapters on the topic "High dose rate brachytherapy"
Kakimoto, Naoya. "High-Dose-Rate Brachytherapy for Oral Cancer." In Brachytherapy, 245–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0490-3_18.
Full textRübe, Claudia E., Bernadine R. Donahue, Jay S. Cooper, Caspian Oliai, Yan Yu, Laura Doyle, Rene Rubin, et al. "High-Dose Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_429.
Full textXiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Intraoperative High-Dose-Rate Brachytherapy." In Encyclopedia of Radiation Oncology, 388. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_360.
Full textSalembier, Carl, and Peter Hoskin. "Prostate Brachytherapy: High Dose Rate." In Prostate Cancer: A Comprehensive Perspective, 739–48. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2864-9_62.
Full textHarris, Alexander A., Kyle Stang, Matthew M. Harkenrider, Mitchell Kamrava, Derrick Lock, Gerard Morton, Michael L. Mysz, Timothy Showalter, Anthony C. Wong, and Abhishek A. Solanki. "High Dose Rate Prostate Brachytherapy." In Practical Guides in Radiation Oncology, 127–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65137-4_6.
Full textYoshioka, Yasuo, Minako Sumi, and Masahiko Oguchi. "High-Dose-Rate Brachytherapy as Monotherapy for Prostate Cancer." In Brachytherapy, 181–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0490-3_13.
Full textMose, Stephan, Stephan Mose, Brandon J. Fisher, Iris Rusu, Charlie Ma, Lu Wang, Larry C. Daugherty, et al. "Brachytherapy: High Dose Rate (HDR) Implants." In Encyclopedia of Radiation Oncology, 46–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_143.
Full textXiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Interstitial High Dose Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 385–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_317.
Full textXiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Intracavitary High-Dose-Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 387. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_322.
Full textTselis, Nikolaos, Konrad Mohnike, and Jens Ricke. "Image-Guided High-Dose Rate Brachytherapy in the Treatment of Liver Cancer." In Brachytherapy, 239–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26791-3_13.
Full textConference papers on the topic "High dose rate brachytherapy"
Kazlouskaya, Yu, D. Kazlouski, and A. Plysheuskaya. "HIGH DOSE RATE BRACHYTHERAPY PLANNING PROTOCOLS DEVELOPMENT." In SAKHAROV READINGS 2020: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. Minsk, ICC of Minfin, 2020. http://dx.doi.org/10.46646/sakh-2020-2-80-84.
Full textSchumacher, Mark, Andras Lasso, Ian Cumming, Adam Rankin, Conrad B. Falkson, L. John Schreiner, Chandra Joshi, and Gabor Fichtinger. "3D-printed surface mould applicator for high-dose-rate brachytherapy." In SPIE Medical Imaging, edited by Robert J. Webster and Ziv R. Yaniv. SPIE, 2015. http://dx.doi.org/10.1117/12.2082543.
Full textWong, Adrian, Samira Sojoudia, Marc Gaudet, Wan Wan Yap, Silvia D. Chang, Purang Abolmaesumi, Christina Aquino-Parsons, and Mehdi Moradi. "Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy." In SPIE Medical Imaging, edited by Ziv R. Yaniv and David R. Holmes. SPIE, 2014. http://dx.doi.org/10.1117/12.2044235.
Full textBuzurovic, I., V. Misic, and Yan Yu. "Needle identification in high-dose-rate prostate brachytherapy using ultrasound imaging modality." In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6345971.
Full textMolokov, A. A., E. A. Vanina, and S. S. Tseluyko. "Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer." In PHYSICS OF CANCER: INTERDISCIPLINARY PROBLEMS AND CLINICAL APPLICATIONS: Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC IPCA’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5001629.
Full textGonzález-Azcorra, S. A., A. Mota-García, M. A. Poitevín-Chacón, B. J. Santamaría-Torruco, M. Rodríguez-Ponce, F. P. Herrera-Martínez, I. Gamboa de Buen, et al. "“In Vivo” Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments." In MEDICAL PHYSICS: Tenth Mexican Symposium on Medical Physics. AIP, 2008. http://dx.doi.org/10.1063/1.2979253.
Full textBadry, Hamza, Lhoucine Oufni, Hmad Ouabi, Rabi Rabi, and Hiroshi Iwase. "Dose optimization of high dose rate brachytherapy for skin cancer treatment using Harrison-Anderson-Mick applicator." In 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). IEEE, 2020. http://dx.doi.org/10.1109/icoa49421.2020.9094522.
Full textWang, Tonghe, Matt Giles, Robert H. Press, Xianjin Dai, Ashesh B. Jani, Peter Rossi, Yang Lei, et al. "Multiparametric MRI-guided high-dose-rate prostate brachytherapy with focal dose boost to dominant intraprostatic lesions." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2020. http://dx.doi.org/10.1117/12.2548152.
Full textMejía, C. A. Reynoso, A. E. Buenfil Burgos, C. Ruiz Trejo, A. Mota García, E. Trejo Durán, M. Rodríguez Ponce, I. Gamboa de Buen, et al. "“In vivo” Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal." In ELEVENTH MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3531590.
Full textIsnaini, Ismet, Joko Triyanto, and Sukandar. "The safety aspect design for remote afterloading high dose rate brachytherapy Ir-192." In THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135543.
Full textReports on the topic "High dose rate brachytherapy"
Rivard, M. J., J. G. Wierzbicki, F. Van den Heuvel, P. J. Chuba, J. Fontanesi, R. C. Martin, R. R. McMahon, and R. G. Haire. The status of low dose rate and future of high dose rate Cf-252 brachytherapy. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/642691.
Full textPouliot, Jean, I.-Chow Hsu, John Kurhanewicz, and Sue Noworelski. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada554551.
Full textPouliot, Jean. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada548097.
Full textPouliot, Jean, I.-Chow Hsu, John Kurhanewicz, and Sue Noworelski. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Addendum. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada508208.
Full textSafarik, Douglas, Dustin Cummins, Deanna Capelli, Peggy Honnell, John Bernal, Maryla Wasiolek, and Donald Hanson. High Dose and Dose Rate 60Co γ-Irradiation of High-Density Polyethylene. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1814730.
Full textL. A. Braby, W. D. Reece, and W. H. Hsu. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/813694.
Full textLANDON, M. R. CONTACT HANDLED TRANSURANIC (TRU) WASTE HIGH DOSE RATE ISSUE RESOLUTION STUDY. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/827766.
Full textMaxim, Peter, Jr Loo, and Billy. Very High Dose-Rate Radiobiology and Radiation Therapy for Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada616594.
Full textStrom, Daniel J. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/15020677.
Full textVenselaar, J. L. M., A. H. L. Aalbers, W. F. M. Brouwer, H. Meertens, J. J. Petersen, B. Schaeken, and A. G. Visser. NCS Report 7: Recommendations for the calibration of Iridium-192 high dose rate sources. Delft: NCS, December 1994. http://dx.doi.org/10.25030/ncs-007.
Full text