Academic literature on the topic 'High dose rate brachytherapy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High dose rate brachytherapy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High dose rate brachytherapy"

1

Herskovic, Arnold M. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 17 (January 1989): 106. http://dx.doi.org/10.1016/0360-3016(89)90619-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petereit, Daniel G., and Jack F. Fowler. "High-dose-rate brachytherapy—." International Journal of Radiation Oncology*Biology*Physics 55, no. 5 (April 2003): 1159–61. http://dx.doi.org/10.1016/s0360-3016(02)04526-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Speiser, Burton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 19 (January 1990): 115. http://dx.doi.org/10.1016/0360-3016(90)90638-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Speiser, Burton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 21 (January 1991): 103. http://dx.doi.org/10.1016/0360-3016(91)90418-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Speiser, Burton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 24 (January 1992): 110–11. http://dx.doi.org/10.1016/0360-3016(92)90115-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Speiser, Borton L. "High dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 27 (1993): 116. http://dx.doi.org/10.1016/0360-3016(93)90609-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Itami, Jun. "Modern development of high-dose-rate brachytherapy." Japanese Journal of Clinical Oncology 50, no. 5 (March 5, 2020): 490–501. http://dx.doi.org/10.1093/jjco/hyaa029.

Full text
Abstract:
Abstract Brachytherapy is an invasive therapy with placement of radiation source into or near the tumor. The difference between planning target volume and clinical target volume is minimal, and the dose out of the tumor reduces rapidly due to the inverse-square law. High-dose-rate brachytherapy enables three-dimensional image guidance, and currently, tumor dose as well as doses of the surrounding normal structures can be evaluated accurately. High-dose-rate brachytherapy is the utmost precision radiation therapy even surpassing carbon ion therapy. Biological disadvantages of high-dose rate have been overcome by the fractional irradiation. High-dose-rate brachytherapy is indispensable in the definitive radiation therapy of cervical cancer. Also in prostate cancer and breast cancer, high-dose-rate brachytherapy plays a significant role. Brachytherapy requires techniques and skills of radiation oncologists at the time of invasive placement of the radiation source into the tumor area. Education of young radiation oncologists is most urgent and important.
APA, Harvard, Vancouver, ISO, and other styles
8

Nag, Subir, and Kenneth S. Hu. "Intraoperative high-dose-rate brachytherapy." Surgical Oncology Clinics of North America 12, no. 4 (October 2003): 1079–97. http://dx.doi.org/10.1016/s1055-3207(03)00092-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alberti, Winfried E. "Endobronchial high dose rate brachytherapy." International Journal of Radiation Oncology*Biology*Physics 25, no. 4 (March 1993): 753–55. http://dx.doi.org/10.1016/0360-3016(93)90024-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martinez, Alvaro A., Jeffrey Demanes, Carlos Vargas, Lionel Schour, Michel Ghilezan, and Gary S. Gustafson. "High-Dose-Rate Prostate Brachytherapy." American Journal of Clinical Oncology 33, no. 5 (October 2010): 481–88. http://dx.doi.org/10.1097/coc.0b013e3181b9cd2f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "High dose rate brachytherapy"

1

Morén, Björn. "Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy." Licentiate thesis, Linköpings universitet, Optimeringslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154966.

Full text
Abstract:
Cancer is a widespread type of diseases that each year affects millions of people. It is mainly treated by chemotherapy, surgery or radiation therapy, or a combination of them. One modality of radiation therapy is high dose-rate brachytherapy, used in treatment of for example prostate cancer and gynecologic cancer. Brachytherapy is an invasive treatment in which catheters (hollow needles) or applicators are used to place the highly active radiation source close to or within a tumour. The treatment planning problem, which can be modelled as a mathematical optimization problem, is the topic of this thesis. The treatment planning includes decisions on how many catheters to use and where to place them as well as the dwell times for the radiation source. There are multiple aims with the treatment and these are primarily to give the tumour a radiation dose that is sufficiently high and to give the surrounding healthy tissue and organs (organs at risk) a dose that is sufficiently low. Because these aims are in conflict, modelling the treatment planning gives optimization problems which essentially are multiobjective. To evaluate treatment plans, a concept called dosimetric indices is commonly used and they constitute an essential part of the clinical treatment guidelines. For the tumour, the portion of the volume that receives at least a specified dose is of interest while for an organ at risk it is rather the portion of the volume that receives at most a specified dose. The dosimetric indices are derived from the dose-volume histogram, which for each dose level shows the corresponding dosimetric index. Dose-volume histograms are commonly used to visualise the three-dimensional dose distribution. The research focus of this thesis is mathematical modelling of the treatment planning and properties of optimization models explicitly including dosimetric indices, which the clinical treatment guidelines are based on. Modelling dosimetric indices explicitly yields mixedinteger programs which are computationally demanding to solve. The computing time of the treatment planning is of clinical relevance as the planning is typically conducted while the patient is under anaesthesia. Research topics in this thesis include both studying properties of models, extending and improving models, and developing new optimization models to be able to take more aspects into account in the treatment planning. There are several advantages of using mathematical optimization for treatment planning in comparison to manual planning. First, the treatment planning phase can be shortened compared to the time consuming manual planning. Secondly, also the quality of treatment plans can be improved by using optimization models and algorithms, for example by considering more of the clinically relevant aspects. Finally, with the use of optimization algorithms the requirements of experience and skill level for the planners are lower. This thesis summary contains a literature review over optimization models for treatment planning, including the catheter placement problem. How optimization models consider the multiobjective nature of the treatment planning problem is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Krastel, Dorothee. "Intrakavitäre High-Dose-Rate-Brachytherapie zur Behandlung von Nasentumoren beim Hund." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38005.

Full text
Abstract:
Für die Therapie maligner intranasaler Neoplasien beim Hund existieren nur mäßig be-friedigende Behandlungsstrategien. Als Therapiemodalität der Wahl wird die Radiothe-rapie angesehen, die gegenwärtig v.a. in Form einer perkutanen Bestrahlung (Telethe-rapie) mit aufwendigen, bis zu 20 Fraktionen umfassenden Protokollen kurativer Intenti-on angewendet wird. Die erreichbaren Überlebenszeiten sind meist limitiert durch das Auftreten eines Rezidivs des Nasentumors innerhalb des Bestrahlungsfeldes, sodass eine Erhöhung der applizierten Gesamtdosis nötig erscheint. Dies ist jedoch im Rahmen einer Teletherapie aufgrund nicht vertretbarer akuter Nebenwirkungen nicht möglich. Alternativ steht die Brachytherapie zur Verfügung, die aufgrund ihrer physikalischen Charakteristika zur besseren Schonung des umliegenden Normalgewebes beiträgt. Ge-genwärtig existieren keine anderen Untersuchungen zur Anwendung der fraktionierten High-Dose-Rate-Brachytherapie bei Nasentumoren des Hundes. Ziel dieser Studie war es daher, die Durchführbarkeit dieser Therapiemodalität beim Hund erstmals zu unter-suchen und die akuten und chronischen Nebenwirkungen sowie die erzielbare progres-sionsfreie Zeit und die Überlebenszeit zu dokumentieren. Im Zeitraum von 2001 bis 2007 gingen 18 Hunde in die Studie ein. Das diagnostische Vorgehen beinhaltete neben einer klinischen Untersuchung und der Röntgenuntersu-chung von Nase und Thorax auch die kernspintomographische Beurteilung der Nasen-höhlen und eine nachfolgende Rhinoskopie inklusive Biopsie. Die Therapie bestand aus zwei wöchentlichen Fraktionen, bei denen in Vollnarkose über einen in der Nasenhöhle applizierten Katheter mithilfe des Radioisotops 192Iridium jeweils 5 Gy appliziert wurden. Die damit über vier Wochen erreichte Gesamtdosis lag bei 40 Gy, und entsprach damit der biologischen Effizienz einer perkutan applizierten konventionell fraktionierten Ge-samtdosis von circa 60 Gy. Im Anschluss an die Therapie wurden die Hunde monatlich klinisch untersucht und die auftretenden Nebenwirkungen anhand des Radiation Morbi-dity Scores der VRTOG beschrieben. Es wurden außerdem weiterführende Untersu-chungen in Form von MRT, Rhinoskopie und Biopsie durchgeführt. Die aufgetretenen Nebenwirkungen waren mit denen in der Literatur nach Teletherapie beschriebenen vergleichbar, beziehungsweise fielen im Bereich von Augen und Maulschleimhaut ge-ringer aus. Nebenwirkungen im Bereich der Haut traten in Form von Alopezie, Hyper-pigmentation oder Leukotrichie auf. Im Bereich der Nasenschleimhaut zeigten fast alle Hunde eine leichte chronische Rhinitis. Als problematische Nebenwirkungen traten bei drei Patienten Osteoradionekrosen auf, die einer aufwendigeren chirurgischen Versor-gung bedurften. Die mediane progressionsfreie Zeit lag bei 13 Monaten, die mediane Überlebenszeit bei 17 Monaten. Die Adenokarzinome wiesen die längste Überlebens-zeit auf, dies war jedoch aufgrund der insgesamt kleinen Patientenzahl nicht signifikant. Ein Zusammenhang zwischen dem Tumorstadium und der progessionsfreien Zeit oder Überlebenszeit bestand nicht. Bei dem beschriebenen Protokoll handelt es sich um eine unter klinischen Bedingungen praktikable Therapieform, die mit ihren insgesamt acht Fraktionen für Besitzer und Tier wesentlich weniger belastend ist als teletherapeutische kurative Protokolle mit 12-20 Fraktionen. Gleichzeitig gelingt es, eine Gesamtdosis von verhältnismäßig hoher biolo-gischer Effizienz zu applizieren, ohne jedoch stärkere Nebenwirkungen in Kauf nehmen zu müssen. Im Bereich von Auge und Maulschleimhaut sind die Nebenwirkungen sogar geringer. Bei einem kleinen Teil der Patienten treten jedoch auch hier, ebenso wie nach teletherapeutischen Protokollen, problematische chronische Nebenwirkungen auf, die die Lebensqualität der betroffenen Tiere beeinträchtigen und die einer aufwendigeren Therapie zwingend bedürfen. Die mit diesem Protokoll erreichten Remissions- und Ü-berlebenszeiten sind mit denen aus der Literatur vergleichbar bis tendenziell besser. Aufgrund der oben genannten Vorteile erscheint die vorgestellte Therapie daher als Al-ternative zu Teletherapie bei der Behandlung kaniner Nasentumoren durchaus geeig-net. Weitere Studien mit größeren Patientenzahlen unter Einbeziehung einer anders therapierten Kontrollgruppe sind jedoch notwendig
APA, Harvard, Vancouver, ISO, and other styles
3

Cui, Songye, and Songye Cui. "Multi-criteria optimization algorithms for high dose rate brachytherapy." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37180.

Full text
Abstract:
L’objectif général de cette thèse est d’utiliser les connaissances en physique de la radiation, en programmation informatique et en équipement informatique à la haute pointe de la technologie pour améliorer les traitements du cancer. En particulier, l’élaboration d’un plan de traitement en radiothérapie peut être complexe et dépendant de l’utilisateur. Cette thèse a pour objectif de simplifier la planification de traitement actuelle en curiethérapie de la prostate à haut débit de dose (HDR). Ce projet a débuté à partir d’un algorithme de planification inverse largement utilisé, la planification de traitement inverse par recuit simulé (IPSA). Pour aboutir à un algorithme de planification inverse ultra-rapide et automatisé, trois algorithmes d’optimisation multicritères (MCO) ont été mis en oeuvre. Suite à la génération d’une banque de plans de traitement ayant divers compromis avec les algorithmes MCO, un plan de qualité a été automatiquement sélectionné. Dans la première étude, un algorithme MCO a été introduit pour explorer les frontières de Pareto en curiethérapie HDR. L’algorithme s’inspire de la fonctionnalité MCO intégrée au système Raystation (RaySearch Laboratories, Stockholm, Suède). Pour chaque cas, 300 plans de traitement ont été générés en série pour obtenir une approximation uniforme de la frontière de Pareto. Chaque plan optimal de Pareto a été calculé avec IPSA et chaque nouveau plan a été ajouté à la portion de la frontière de Pareto où la distance entre sa limite supérieure et sa limite inférieure était la plus grande. Dans une étude complémentaire, ou dans la seconde étude, un algorithme MCO basé sur la connaissance (kMCO) a été mis en oeuvre pour réduire le temps de calcul de l’algorithme MCO. Pour ce faire, deux stratégies ont été mises en oeuvre : une prédiction de l’espace des solutions cliniquement acceptables à partir de modèles de régression et d’un calcul parallèle des plans de traitement avec deux processeurs à six coeurs. En conséquence, une banque de plans de traitement de petite taille (14) a été générée et un plan a été sélectionné en tant que plan kMCO. L’efficacité de la planification et de la performance dosimétrique ont été comparées entre les plans approuvés par le médecin et les plans kMCO pour 236 cas. La troisième et dernière étude de cette thèse a été réalisée en coopération avec Cédric Bélanger. Un algorithme MCO (gMCO) basé sur l’utilisation d’un environnement de développement compatible avec les cartes graphiques a été mis en oeuvre pour accélérer davantage le calcul. De plus, un algorithme d’optimisation quasi-Newton a été implémenté pour remplacer le recuit simulé dans la première et la deuxième étude. De cette manière, un millier de plans de traitement avec divers compromis et équivalents à ceux générés par IPSA ont été calculés en parallèle. Parmi la banque de plans de traitement généré par l’agorithme gMCO, un plan a été sélectionné (plan gMCO). Le temps de planification et les résultats dosimétriques ont été comparés entre les plans approuvés par le médecin et les plans gMCO pour 457 cas. Une comparaison à grande échelle avec les plans approuvés par les radio-oncologues montre que notre dernier algorithme MCO (gMCO) peut améliorer l’efficacité de la planification du traitement (de quelques minutes à 9:4 s) ainsi que la qualité dosimétrique des plans de traitements (des plans passant de 92:6% à 99:8% selon les critères dosimétriques du groupe de traitement oncologique par radiation (RTOG)). Avec trois algorithmes MCO mis en oeuvre, cette thèse représente un effort soutenu pour développer un algorithme de planification inverse ultra-rapide, automatique et robuste en curiethérapie HDR.
L’objectif général de cette thèse est d’utiliser les connaissances en physique de la radiation, en programmation informatique et en équipement informatique à la haute pointe de la technologie pour améliorer les traitements du cancer. En particulier, l’élaboration d’un plan de traitement en radiothérapie peut être complexe et dépendant de l’utilisateur. Cette thèse a pour objectif de simplifier la planification de traitement actuelle en curiethérapie de la prostate à haut débit de dose (HDR). Ce projet a débuté à partir d’un algorithme de planification inverse largement utilisé, la planification de traitement inverse par recuit simulé (IPSA). Pour aboutir à un algorithme de planification inverse ultra-rapide et automatisé, trois algorithmes d’optimisation multicritères (MCO) ont été mis en oeuvre. Suite à la génération d’une banque de plans de traitement ayant divers compromis avec les algorithmes MCO, un plan de qualité a été automatiquement sélectionné. Dans la première étude, un algorithme MCO a été introduit pour explorer les frontières de Pareto en curiethérapie HDR. L’algorithme s’inspire de la fonctionnalité MCO intégrée au système Raystation (RaySearch Laboratories, Stockholm, Suède). Pour chaque cas, 300 plans de traitement ont été générés en série pour obtenir une approximation uniforme de la frontière de Pareto. Chaque plan optimal de Pareto a été calculé avec IPSA et chaque nouveau plan a été ajouté à la portion de la frontière de Pareto où la distance entre sa limite supérieure et sa limite inférieure était la plus grande. Dans une étude complémentaire, ou dans la seconde étude, un algorithme MCO basé sur la connaissance (kMCO) a été mis en oeuvre pour réduire le temps de calcul de l’algorithme MCO. Pour ce faire, deux stratégies ont été mises en oeuvre : une prédiction de l’espace des solutions cliniquement acceptables à partir de modèles de régression et d’un calcul parallèle des plans de traitement avec deux processeurs à six coeurs. En conséquence, une banque de plans de traitement de petite taille (14) a été générée et un plan a été sélectionné en tant que plan kMCO. L’efficacité de la planification et de la performance dosimétrique ont été comparées entre les plans approuvés par le médecin et les plans kMCO pour 236 cas. La troisième et dernière étude de cette thèse a été réalisée en coopération avec Cédric Bélanger. Un algorithme MCO (gMCO) basé sur l’utilisation d’un environnement de développement compatible avec les cartes graphiques a été mis en oeuvre pour accélérer davantage le calcul. De plus, un algorithme d’optimisation quasi-Newton a été implémenté pour remplacer le recuit simulé dans la première et la deuxième étude. De cette manière, un millier de plans de traitement avec divers compromis et équivalents à ceux générés par IPSA ont été calculés en parallèle. Parmi la banque de plans de traitement généré par l’agorithme gMCO, un plan a été sélectionné (plan gMCO). Le temps de planification et les résultats dosimétriques ont été comparés entre les plans approuvés par le médecin et les plans gMCO pour 457 cas. Une comparaison à grande échelle avec les plans approuvés par les radio-oncologues montre que notre dernier algorithme MCO (gMCO) peut améliorer l’efficacité de la planification du traitement (de quelques minutes à 9:4 s) ainsi que la qualité dosimétrique des plans de traitements (des plans passant de 92:6% à 99:8% selon les critères dosimétriques du groupe de traitement oncologique par radiation (RTOG)). Avec trois algorithmes MCO mis en oeuvre, cette thèse représente un effort soutenu pour développer un algorithme de planification inverse ultra-rapide, automatique et robuste en curiethérapie HDR.
The overall purpose of this thesis is to use the knowledge of radiation physics, computer programming and computing hardware to improve cancer treatments. In particular, designing a treatment plan in radiation therapy can be complex and user-dependent, and this thesis aims to simplify current treatment planning in high dose rate (HDR) prostate brachytherapy. This project was started from a widely used inverse planning algorithm, Inverse Planning Simulated Annealing (IPSA). In order to eventually lead to an ultra-fast and automatic inverse planning algorithm, three multi-criteria optimization (MCO) algorithms were implemented. With MCO algorithms, a desirable plan was selected after computing a set of treatment plans with various trade-offs. In the first study, an MCO algorithm was introduced to explore the Pareto surfaces in HDR brachytherapy. The algorithm was inspired by the MCO feature integrated in the Raystation system (RaySearch Laboratories, Stockholm, Sweden). For each case, 300 treatment plans were serially generated to obtain a uniform approximation of the Pareto surface. Each Pareto optimal plan was computed with IPSA, and each new plan was added to the Pareto surface portion where the distance between its upper boundary and its lower boundary was the largest. In a companion study, or the second study, a knowledge-based MCO (kMCO) algorithm was implemented to shorten the computation time of the MCO algorithm. To achieve this, two strategies were implemented: a prediction of clinical relevant solution space with previous knowledge, and a parallel computation of treatment plans with two six-core CPUs. As a result, a small size (14) plan dataset was created, and one plan was selected as the kMCO plan. The planning efficiency and the dosimetric performance were compared between the physician-approved plans and the kMCO plans for 236 cases. The third and final study of this thesis was conducted in cooperation with Cédric Bélanger. A graphics processing units (GPU) based MCO (gMCO) algorithm was implemented to further speed up the computation. Furthermore, a quasi-Newton optimization engine was implemented to replace simulated annealing in the first and the second study. In this way, one thousand IPSA equivalent treatment plans with various trade-offs were computed in parallel. One plan was selected as the gMCO plan from the calculated plan dataset. The planning time and the dosimetric results were compared between the physician-approved plans and the gMCO plans for 457 cases. A large-scale comparison against the physician-approved plans shows that our latest MCO algorithm (gMCO) can result in an improved treatment planning efficiency (from minutes to 9:4 s) as well as an improved treatment plan dosimetric quality (Radiation Therapy Oncology Group (RTOG) acceptance rate from 92.6% to 99.8%). With three implemented MCO algorithms, this thesis represents a sustained effort to develop an ultra-fast, automatic and robust inverse planning algorithm in HDR brachytherapy.
The overall purpose of this thesis is to use the knowledge of radiation physics, computer programming and computing hardware to improve cancer treatments. In particular, designing a treatment plan in radiation therapy can be complex and user-dependent, and this thesis aims to simplify current treatment planning in high dose rate (HDR) prostate brachytherapy. This project was started from a widely used inverse planning algorithm, Inverse Planning Simulated Annealing (IPSA). In order to eventually lead to an ultra-fast and automatic inverse planning algorithm, three multi-criteria optimization (MCO) algorithms were implemented. With MCO algorithms, a desirable plan was selected after computing a set of treatment plans with various trade-offs. In the first study, an MCO algorithm was introduced to explore the Pareto surfaces in HDR brachytherapy. The algorithm was inspired by the MCO feature integrated in the Raystation system (RaySearch Laboratories, Stockholm, Sweden). For each case, 300 treatment plans were serially generated to obtain a uniform approximation of the Pareto surface. Each Pareto optimal plan was computed with IPSA, and each new plan was added to the Pareto surface portion where the distance between its upper boundary and its lower boundary was the largest. In a companion study, or the second study, a knowledge-based MCO (kMCO) algorithm was implemented to shorten the computation time of the MCO algorithm. To achieve this, two strategies were implemented: a prediction of clinical relevant solution space with previous knowledge, and a parallel computation of treatment plans with two six-core CPUs. As a result, a small size (14) plan dataset was created, and one plan was selected as the kMCO plan. The planning efficiency and the dosimetric performance were compared between the physician-approved plans and the kMCO plans for 236 cases. The third and final study of this thesis was conducted in cooperation with Cédric Bélanger. A graphics processing units (GPU) based MCO (gMCO) algorithm was implemented to further speed up the computation. Furthermore, a quasi-Newton optimization engine was implemented to replace simulated annealing in the first and the second study. In this way, one thousand IPSA equivalent treatment plans with various trade-offs were computed in parallel. One plan was selected as the gMCO plan from the calculated plan dataset. The planning time and the dosimetric results were compared between the physician-approved plans and the gMCO plans for 457 cases. A large-scale comparison against the physician-approved plans shows that our latest MCO algorithm (gMCO) can result in an improved treatment planning efficiency (from minutes to 9:4 s) as well as an improved treatment plan dosimetric quality (Radiation Therapy Oncology Group (RTOG) acceptance rate from 92.6% to 99.8%). With three implemented MCO algorithms, this thesis represents a sustained effort to develop an ultra-fast, automatic and robust inverse planning algorithm in HDR brachytherapy.
APA, Harvard, Vancouver, ISO, and other styles
4

Poon, Emily Sau Chee. "Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86632.

Full text
Abstract:
In high-dose-rate iridium-192 brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive iridium source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution.
In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities.
We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the iridium source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%.
Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing. The scatter dose is again adjusted using our scatter correction technique. The algorithm was tested using phantoms and actual patient plans for head-and-neck, esophagus, and MammoSite breast brachytherapy. Although the method fails to correct for the changes in lateral scatter introduced by inhomogeneities, it is a major improvement over TG-43 and is sufficiently fast for clinical use.
En curiethérapies à haut débit de dose, la dose aux patients est évaluée selon le protocole AAPM Task-Group 43 (TG43), qui utilise des paramètres dosimétriques obtenues avec une source dans l'eau. Cependant, le patient, l'applicateur et le contraste ont des propriétés radiologiques différentes de l'eau; ces inhomogénéités sont donc négligées dans TG43.
Dans ce travail, nous utilisons le programme Monte Carlo (MC) GEANT4 pour évaluer les propriétés dosimétriques d'un applicateur rectal muni d'un blindage radio-protecteur et d'un ballon intra-cavitaire. Ces résultats sont confirmés par des mesures d'une chambre d'ionisation et des films GAFCHROMIC EBT. Une étude des calculs de dose a été faite avec le programme PTRAN_CT avec l'aide des images scanner de 40 patients de cancer rectal. Ceci a conduit au développement de BrachyGUI, un programme de planification de curiethérapie, capable de traiter les données DICOM-RT des patients et générer les paramètres d'entrée pour PTRAN_CT. BrachyGUI dispose d'outils de calcul, d'extraction et d'analyse de dose.
Nous proposons une nouvelle méthode de calcul qui tient compte des effets de diffusion au voisinage des interfaces tissus-air. Cette méthode calcule séparément la dose due aux photons primaires et diffusés, ensuite la composante diffusée est ajustée par un paramètre extrait des calculs MC incluant les contours du patient, la source et sa position. Nos résultats s'accordent avec une incertitude inferieure à 1% avec les calculs de dose à la surface et dans la cible effectués avec PTRAN_CT pour 18 patients en curiethérapie du sein.
Enfin, nous avons conçu une méthode analytique de calcul de dose qui incorpore l'atténuation et la diffusion des photons, et qui est basée sur les chemins radiologiques déterminées par traçage des trajectoires. Cet algorithme est validé par l'utilisation de fantômes, des données de patients traités pour divers cancers (oesophage, tête et cou), et par la curiethérapie MammoSite du sein. Bien que cette méthode ne reproduise pas bien les diffusions latérales induites par les inhomogénéités, elle représente une amélioration majeure par-rapport-à TG43 et est rapide pour une implémentation clinique.
APA, Harvard, Vancouver, ISO, and other styles
5

Leung, To-wai. "High-dose-rate intracavitary brachytherapy in the treatment of nasopharyngeal carcinoma." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

梁道偉 and To-wai Leung. "High-dose-rate intracavitary brachytherapy in the treatment of nasopharyngeal carcinoma." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Howie, Andrew Gordon, and howie andrew@gmail com. "Improving high dose rate and pulsed dose rate prostate brachytherapy - alternative prostate definition and treatment delivery verification methods." RMIT University. Applied Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091007.091553.

Full text
Abstract:
Brachytherapy is a form of radiotherapy in which radioactive sources are placed at short distances from, or even inside the target volume. The use of high dose rate brachytherapy is a widely accepted and clinically proven treatment for some stages of prostate cancer. The aim of this project was to investigate potential improvements on two of the most important aspects of high dose rate (HDR) and pulsed dose rate (PDR) prostate brachytherapy - prostate definition and treatment delivery verification. The use of magnetic resonance (MR) imaging in addition to the conventional computed tomography (CT) imaging methods currently used routinely for brachytherapy planning may provide some benefit in accurately defining the prostate and surrounding critical structures. The methods used in this project involved analysis of data sets provided by two Radiation Oncologists. The results presented showed inter-observer and intra-observer variations in the size and shape of the prostate, as well as analysis of the dosimetric differences that may be reported due to the differences in prostate size and shape. The results also included analysis of critical structure dosimetry - dose to the surrounding radio-sensitive rectum and urethra. In summary, the results showed that the prostate was defined to be smaller using MR imaging than CT, however the consistency between Oncologists was not significantly improved using MR imaging. MR imaging may be useful in reducing the dose to normal tissue surrounding the prostate and in obtaining better coverage of the smaller target volume, without compromising the critical structures. The use of LiF:Mg,Ti thermoluminescent dosimeters (TLDs) is a potential avenue for in vivo dose verification of an HDR or PDR prostate brachytherapy treatment plan. This project included a phantom study of these TLDs with the aim to determine their feasibility for clinical use. Cylindrical TLD rods (6 mm length x 1 mm diameter) were used, as these fit inside the brachytherapy needles implanted into the prostate, and therefore had potential to be used clinically to verify the dose delivered in the prostate. This study was extended to include determination of a correction factor to allow an independent radiation source (6 MV photon beam from a linear accelerator) to be used to obtain control readings for this relative dosimetric method. The results showed these TLDs to be a promising in vivo dosimeter for prostate brachytherapy with potential errors in the order of 4%. Their potential lies in the fact that they could detect and flag significant calculation errors in treatment plans, and they utilise equipment used routinely for external beam radiotherapy dosimetry in many treatment facilities, reducing the cost of implementing such a procedure.
APA, Harvard, Vancouver, ISO, and other styles
8

Wahlgren, Thomas. "High dose rate brachytherapy boost for localized prostate cancer : clinical and patient-reported outcomes/." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-931-9/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Asgharizadeh, Saeid. "Patient specific quality assurance tool for high dose rate brachytherapy for rectal cancer patients." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=122975.

Full text
Abstract:
In radiation therapy, accurate dose determination and precise dose delivery to the tumour are directly associated with better treatment outcomes in terms of higher tumour control and lower post radiation therapy complications. In the past, film dosimetry was developed into a powerful tool for external beam radiotherapy treatment verification and quality assurance. The objective of this thesis was the development and clinical application of the EBT-3GafChromicTMfilm model patient specific based quality assurance (QA) procedures in brachytherapy. The lack of clinical measurements and patient specific QA procedures (similar to that in intensity modulated radiotherapy (IMRT) delivery) in high dose rate brachytherapy (HDRBT) were the motivation to improve both the QA program of delivery and patient safety during brachytherapy procedures.Patient specific QA tools for pre-operative brachytherapy in rectal cancer developed in this thesis use a radiochromic film dosimetry system together with gamma function evaluation method to compare calculated and measured dose distributions. We also created a dedicated phantom for a brachytherapy applicator used for treatment of rectal cancer patients, which enabled us to compare calculated dose distributions to measured ones in high and low dose gradient regions. Starting from the same passing criteria used for external IMRT QA (3%, 3 mm), passing criteria for high and low dose regions were subsequently discussed. Finally, we investigated the QA system's sensitivity to source positional errors by introducing intentional and controlled mistakes on selected patient plans.Results presented in this thesis demonstrated that radiochromic film dosimetry based QA for brachytherapy can be used not only for patient specific quality assurance, but as a part of the commissioning process and periodic QA as well.
En radiothérapie, la détermination de la dose exacte et la livraison de dose précise de la tumeur sont directement associés à de meilleurs résultats de traitement en termes de contrôle de la tumeur et à une baisse des complications de thérapie post- irradiation. Dans le passé, le film dosimétrie a été développé dans un outil puissant pour la radiothérapie externe de faisceau (CDE) vérification du traitement et de l'assurance de la qualité. L'objectif de cette thèse est le développement et l'application clinique de la BAI - 3 GafChromicTM modèle de film spécifique au patient d'assurance de la qualité basé (AQ) procédures en Brachythérapie. L'absence de mesures cliniques et les procédures d'assurance qualité spécifiques au patient (similaire à celle de la livraison IMRT) en haute curiethérapie de débit de dose (HDRBT) étaient la motivation pour améliorer à la fois le programme d'AQ de livraison et la sécurité des patients pendant les procédures de Brachythérapie.Outils d'assurance qualité spécifiques au patient pour curiethérapie préopératoire dans le cancer du rectum développé dans cette thèse utilise un système de dosimétrie du film Radiochromique avec la méthode d'évaluation de la fonction gamma pour comparer des distributions de dose calculées et mesurées. Nous avons également créé un fantôme dédié pour un applicateur de curiethérapie utilisé pour le traitement des patients atteints de cancer du rectum, ce qui nous a permis de comparer les distributions de dose calculées à celles mesurées dans les régions de gradient doses élevées et faibles. A partir de même critère de passage utilisé pour externe IMRT QA (3 %, 3 mm), en passant critères pour les régions hautes et basses doses ont ensuite été discuté. Enfin, nous avons étudié la sensibilité du système d'assurance qualité à la source des erreurs de position en introduisant des erreurs intentionnelles et contrôlées sur les plans de patients sélectionnés.Les résultats présentés dans cette thèse ont démontré que l'AQ sur film Radiochromique dosimétrie pour curiethérapie peut être utilisée non seulement pour l'assurance qualité spécifique au patient, mais comme une partie du processus de mise en service et AQ périodique ainsi.
APA, Harvard, Vancouver, ISO, and other styles
10

Zlobec, Inti. "A predictive model of rectal tumour response to pre-operative high-dose rate endorectal brachytherapy /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103189.

Full text
Abstract:
Pre-operative radiotherapy for patients with locally advanced rectal carcinoma has been shown to improve survival rates and local tumour control. The ability to identify tumours most likely to undergo a complete or partial response would improve the selection of patients for radiotherapy and potentially modify post-treatment planning. The aim of this study was to develop a multi-marker model of tumour response to pre-operative high-dose rate endorectal brachytherapy (HDREB). Immunohistochemistry (IHC) for p53, Bcl-2, VEGF, APAF-1 and EGFR was carried out on 104 pre-treatment rectal tumour biopsies from patients undergoing a pre-operative HDREB protocol. Immunoreactivity was scored by at least three pathologists using a semi-quantitative scoring method. The reproducibility of the scoring system was evaluated. Receiver operating characteristic curve (ROC) analysis was performed for each protein to determine clinically relevant cutoff scores for defining tumour positivity. Multivariate logistic regression analysis was carried out to identify independent predictive factors of tumour response. Both the semi-quantitative scoring system and ROC curve analysis were found to be reproducible. In addition, the combined analysis of VEGF and EGFR was highly predictive of complete pathologic response to radiotherapy. EGFR was found to independently predict complete or partial tumour regression but only with low sensitivity and specificity. A large-scale prospective study is necessary to confirm these findings. Moreover, the novel methodology proposed and validated in this study to assess immunoreactivity could significantly enhance the value of IHC findings in colorectal cancer as well as other tumour types.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "High dose rate brachytherapy"

1

International Symposium: High Dose Rate Afterloading in the Treatment of Cancer of the Uterus (1986 Giessen, Germany). High dose rate afterloading in the treatment of cancer of the uterus, breast and rectum: Proceedings of the International Symposium: High Dose Rate Afterloading in the Treatment of Cancer of the Uterus, held at Giessen, 10-12 July, 1986. München: Urban & Schwarzenberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nag, Subir. High Dose Rate Brachytherapy: A Textbook. Futura Pub Co, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subir, Nag, ed. High dose rate brachytherapy: A textbook. New York: Futura, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

ICRP Publication 97 Prevention of High-dose-rate Brachytherapy Accidents (International Commission on Radiological Protection). Elsevier, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horton, Patrick, Deborah J. Peet, David G. Sutton, and Colin J. Martin. Radiotherapy: brachytherapy and unsealed radionuclide therapy. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0020.

Full text
Abstract:
The facilities and safe procedures required for afterloading (remote low, pulsed, and high dose-rate and manual), permanent seed implants, external plaques, intraoperative radiotherapy with X-ray sources, and unsealed radionuclide therapy (inpatient and outpatient) are described. Treatment room design makes particular reference to the shielded rooms required for high dose-rate afterloading and unsealed radionuclide therapy with I-131 and examples are included for calculating shielding thickness to achieve required dose constraints. Room location, layout, good practice, and engineering controls are also described, together with radiation surveys of completed facilities. The storage, handling, and record-keeping for both sealed and unsealed sources is discussed. The need for risk assessments and contingency plans is emphasized. Data for calculating shielding thickness and X-ray scatter for maze design are provided.
APA, Harvard, Vancouver, ISO, and other styles
6

Vahrson, H. High Dose Rate Afterloading in the Treatment of Cancer in the Uterus Breast and Rectum (Supplements to Strahlentherapie Und Onkologie, Vol 82). Urban & Schwarzenberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Christoph I. Low-Dose CT Screening for Lung Cancer. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190223700.003.0044.

Full text
Abstract:
This chapter, found in the cancer screening and management section of the book, provides a succinct synopsis of a key study examining the efficacy of low-dose computed tomography screening for lung cancer. This summary outlines the study methodology and design, major results, limitations and criticisms, related studies and additional information, and clinical implications. The study showed that annual low-dose CT screening among high-risk individuals decreases lung cancer mortality. While the rate of false positives was nearly 3 times higher for those screened by low-dose CT compared to chest radiography, complications from invasive diagnostic evaluation after positive screens were rare. In addition to outlining the most salient features of the study, a clinical vignette and imaging example are included in order to provide relevant clinical context.
APA, Harvard, Vancouver, ISO, and other styles
8

Hoskin, Peter. Penis. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199696567.003.0012.

Full text
Abstract:
Chapter 8d discusses carcinoma of the penis, which is typically a squamous carcinoma arising on the penile shaft or glands in an uncircumcised patient. Management may be by primary surgery, either total amputation or partial amputation with reconstruction, or primary radiotherapy. Primary radiotherapy is indicated for those patients with T1 and T2 tumours <4 cm in diameter, particularly in those unfit for surgery, those with locally advanced disease and fixed inguinal lymph nodes, and for patients in whom surgical treatment may require total amputation and where they choose to have organ preservation by radiotherapy as an alternative. No randomized trial comparison is available to give accurate figures for the relative efficacy of either treatment. Brachytherapy is an alternative means of delivering high-dose radiotherapy to the penis and may be considered where there is local expertise for this instead of external beam treatment.
APA, Harvard, Vancouver, ISO, and other styles
9

Cassidy, Jim, Donald Bissett, Roy A. J. Spence OBE, Miranda Payne, and Gareth Morris-Stiff. Principles of chemotherapy. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199689842.003.0005.

Full text
Abstract:
Principles of radiation oncology outlines the physical and biological effects of ionising radiation, and its use in clinical oncology. Radiobiology, examining the response of tissue to ionising radiation, is described with regards to normal and malignant tissues. The effect of fractionation, the delivery of radiotherapy in a series of repeated exposures, is examined. The damaging effects on normal tissues are considered, particularly nonreversible late effects including carcinogenesis. Therapeutic exposure to ionising radiation is contrasted between radical and palliative radiotherapy. The physical properties of ionising radiation beams are described for superficial x-rays, megavoltage x-rays, and electrons. The process of treatment planning is summarised through beam dosimetry, target and critical organ outlining, dose planning, treatment verification, prescription and delivery. Computerised tomography is used for outlining and for verification, using cone beam CT. 0ther methods for image guided radiotherapy include fiducial markers. Increasingly intensity modulated radiotherapy is proving beneficial in reducing normal tissue damage during radical treatment. Stereotactic radiotherapy is used in the radical treatment of small unresectable malignancies. The clinical use of electron therapy, brachytherapy and intraoperative radiotherapy is described. Nuclear medicine uses unsealed radionuclides in imaging primary malignancies and their metastases, and in targeted radiotherapy. Examples include PET scanning, bone scanning, and radio iodine therapy. Whole body irradiation is used to improve outcomes after high-dose chemotherapy with stem cell or bone marrow transplantation.
APA, Harvard, Vancouver, ISO, and other styles
10

Meyrier, Alain, and Patrick Niaudet. Primary focal segmental glomerulosclerosis. Edited by Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0058_update_001.

Full text
Abstract:
The proportion of cases of primary focal segmental glomerulosclerosis responsive to treatment with corticosteroids is variable and depends on histological type, patient age and duration, and dose of steroid treatment, but overall complete remission rate is estimated at 20–25% in white and Asian patients, and lower in black patients. Partial response dependent on a high dose of steroids is common. Despite anxieties about nephrotoxicity, there may be justification for adding calcineurin inhibitors to control nephrotic syndrome if it is severe. Data for additional agents is not very encouraging. Plasma exchange appears to remove a circulating factor that causes proteinuria in focal segmental glomerulosclerosis, as illustrated by responses to this treatment when proteinuria recurs acutely after kidney transplantation. This is rarely pursued clinically except after transplantation, in advance of severe glomerular injury.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "High dose rate brachytherapy"

1

Kakimoto, Naoya. "High-Dose-Rate Brachytherapy for Oral Cancer." In Brachytherapy, 245–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0490-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rübe, Claudia E., Bernadine R. Donahue, Jay S. Cooper, Caspian Oliai, Yan Yu, Laura Doyle, Rene Rubin, et al. "High-Dose Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Intraoperative High-Dose-Rate Brachytherapy." In Encyclopedia of Radiation Oncology, 388. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salembier, Carl, and Peter Hoskin. "Prostate Brachytherapy: High Dose Rate." In Prostate Cancer: A Comprehensive Perspective, 739–48. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2864-9_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harris, Alexander A., Kyle Stang, Matthew M. Harkenrider, Mitchell Kamrava, Derrick Lock, Gerard Morton, Michael L. Mysz, Timothy Showalter, Anthony C. Wong, and Abhishek A. Solanki. "High Dose Rate Prostate Brachytherapy." In Practical Guides in Radiation Oncology, 127–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65137-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yoshioka, Yasuo, Minako Sumi, and Masahiko Oguchi. "High-Dose-Rate Brachytherapy as Monotherapy for Prostate Cancer." In Brachytherapy, 181–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0490-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mose, Stephan, Stephan Mose, Brandon J. Fisher, Iris Rusu, Charlie Ma, Lu Wang, Larry C. Daugherty, et al. "Brachytherapy: High Dose Rate (HDR) Implants." In Encyclopedia of Radiation Oncology, 46–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Interstitial High Dose Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 385–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xiao, Ying, Jay E. Reiff, Timothy Holmes, Timothy Holmes, Hebert Alberto Vargas, Oguz Akin, Hedvig Hricak, et al. "Intracavitary High-Dose-Rate (HDR) Brachytherapy." In Encyclopedia of Radiation Oncology, 387. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tselis, Nikolaos, Konrad Mohnike, and Jens Ricke. "Image-Guided High-Dose Rate Brachytherapy in the Treatment of Liver Cancer." In Brachytherapy, 239–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26791-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "High dose rate brachytherapy"

1

Kazlouskaya, Yu, D. Kazlouski, and A. Plysheuskaya. "HIGH DOSE RATE BRACHYTHERAPY PLANNING PROTOCOLS DEVELOPMENT." In SAKHAROV READINGS 2020: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. Minsk, ICC of Minfin, 2020. http://dx.doi.org/10.46646/sakh-2020-2-80-84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schumacher, Mark, Andras Lasso, Ian Cumming, Adam Rankin, Conrad B. Falkson, L. John Schreiner, Chandra Joshi, and Gabor Fichtinger. "3D-printed surface mould applicator for high-dose-rate brachytherapy." In SPIE Medical Imaging, edited by Robert J. Webster and Ziv R. Yaniv. SPIE, 2015. http://dx.doi.org/10.1117/12.2082543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Adrian, Samira Sojoudia, Marc Gaudet, Wan Wan Yap, Silvia D. Chang, Purang Abolmaesumi, Christina Aquino-Parsons, and Mehdi Moradi. "Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy." In SPIE Medical Imaging, edited by Ziv R. Yaniv and David R. Holmes. SPIE, 2014. http://dx.doi.org/10.1117/12.2044235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buzurovic, I., V. Misic, and Yan Yu. "Needle identification in high-dose-rate prostate brachytherapy using ultrasound imaging modality." In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6345971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Molokov, A. A., E. A. Vanina, and S. S. Tseluyko. "Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer." In PHYSICS OF CANCER: INTERDISCIPLINARY PROBLEMS AND CLINICAL APPLICATIONS: Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC IPCA’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5001629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

González-Azcorra, S. A., A. Mota-García, M. A. Poitevín-Chacón, B. J. Santamaría-Torruco, M. Rodríguez-Ponce, F. P. Herrera-Martínez, I. Gamboa de Buen, et al. "“In Vivo” Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments." In MEDICAL PHYSICS: Tenth Mexican Symposium on Medical Physics. AIP, 2008. http://dx.doi.org/10.1063/1.2979253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Badry, Hamza, Lhoucine Oufni, Hmad Ouabi, Rabi Rabi, and Hiroshi Iwase. "Dose optimization of high dose rate brachytherapy for skin cancer treatment using Harrison-Anderson-Mick applicator." In 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). IEEE, 2020. http://dx.doi.org/10.1109/icoa49421.2020.9094522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Tonghe, Matt Giles, Robert H. Press, Xianjin Dai, Ashesh B. Jani, Peter Rossi, Yang Lei, et al. "Multiparametric MRI-guided high-dose-rate prostate brachytherapy with focal dose boost to dominant intraprostatic lesions." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2020. http://dx.doi.org/10.1117/12.2548152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mejía, C. A. Reynoso, A. E. Buenfil Burgos, C. Ruiz Trejo, A. Mota García, E. Trejo Durán, M. Rodríguez Ponce, I. Gamboa de Buen, et al. "“In vivo” Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal." In ELEVENTH MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3531590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Isnaini, Ismet, Joko Triyanto, and Sukandar. "The safety aspect design for remote afterloading high dose rate brachytherapy Ir-192." In THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135543.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "High dose rate brachytherapy"

1

Rivard, M. J., J. G. Wierzbicki, F. Van den Heuvel, P. J. Chuba, J. Fontanesi, R. C. Martin, R. R. McMahon, and R. G. Haire. The status of low dose rate and future of high dose rate Cf-252 brachytherapy. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/642691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pouliot, Jean, I.-Chow Hsu, John Kurhanewicz, and Sue Noworelski. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada554551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pouliot, Jean. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada548097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pouliot, Jean, I.-Chow Hsu, John Kurhanewicz, and Sue Noworelski. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Addendum. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada508208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Safarik, Douglas, Dustin Cummins, Deanna Capelli, Peggy Honnell, John Bernal, Maryla Wasiolek, and Donald Hanson. High Dose and Dose Rate 60Co γ-Irradiation of High-Density Polyethylene. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1814730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

L. A. Braby, W. D. Reece, and W. H. Hsu. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/813694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LANDON, M. R. CONTACT HANDLED TRANSURANIC (TRU) WASTE HIGH DOSE RATE ISSUE RESOLUTION STUDY. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/827766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maxim, Peter, Jr Loo, and Billy. Very High Dose-Rate Radiobiology and Radiation Therapy for Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada616594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strom, Daniel J. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/15020677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Venselaar, J. L. M., A. H. L. Aalbers, W. F. M. Brouwer, H. Meertens, J. J. Petersen, B. Schaeken, and A. G. Visser. NCS Report 7: Recommendations for the calibration of Iridium-192 high dose rate sources. Delft: NCS, December 1994. http://dx.doi.org/10.25030/ncs-007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography