To see the other types of publications on this topic, follow the link: High Field MRI.

Journal articles on the topic 'High Field MRI'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'High Field MRI.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Salvolini, Ugo, and Tommaso Scarabino. "High field MRI." European Journal of Radiology 48, no. 2 (November 2003): 137. http://dx.doi.org/10.1016/j.ejrad.2003.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cunningham, Patricia M., Meng Law, and Mark E. Schweitzer. "High-Field MRI." Orthopedic Clinics of North America 37, no. 3 (July 2006): 321–29. http://dx.doi.org/10.1016/j.ocl.2006.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Di Salle, F., F. Esposito, A. Elefante, T. Scarabino, A. Volpicelli, S. Cirillo, R. Elefante, and E. Seifritz. "High field functional MRI." European Journal of Radiology 48, no. 2 (November 2003): 138–45. http://dx.doi.org/10.1016/j.ejrad.2003.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wada, Hitoshi, Masaki Sekino, Hiroyuki Ohsaki, Tatsuhiro Hisatsune, Hiroo Ikehira, and Tsukasa Kiyoshi. "Prospect of High-Field MRI." IEEE Transactions on Applied Superconductivity 20, no. 3 (June 2010): 115–22. http://dx.doi.org/10.1109/tasc.2010.2043939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hespel, Adrien-Maxence, and Robert C. Cole. "Advances in High-Field MRI." Veterinary Clinics of North America: Small Animal Practice 48, no. 1 (January 2018): 11–29. http://dx.doi.org/10.1016/j.cvsm.2017.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doi, et al., Tsukasa. "High Field MRI and Safety." Japanese Journal of Radiological Technology 64, no. 12 (2008): 1491. http://dx.doi.org/10.6009/jjrt.64.1491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coffey, Aaron M., Milton L. Truong, and Eduard Y. Chekmenev. "Low-field MRI can be more sensitive than high-field MRI." Journal of Magnetic Resonance 237 (December 2013): 169–74. http://dx.doi.org/10.1016/j.jmr.2013.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bihan, Denis Le. "Threats to ultra-high-field MRI." Physics World 22, no. 08 (August 2009): 16–17. http://dx.doi.org/10.1088/2058-7058/22/08/23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marzola, Pasquina, Francesco Osculati, and Andrea Sbarbati. "High field MRI in preclinical research." European Journal of Radiology 48, no. 2 (November 2003): 165–70. http://dx.doi.org/10.1016/j.ejrad.2003.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Di Salle, F., T. Scarabino, F. Esposito, A. Aragri, O. Santopaolo, A. Elefante, M. Cirillo, S. Cirillo, and R. Elefante. "Functional MRI at High Field Strength." Rivista di Neuroradiologia 17, no. 6 (December 2004): 813–21. http://dx.doi.org/10.1177/197140090401700611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Grossi, G., and G. Scielzo. "Some Advantages of High Field MRI." Rivista di Neuroradiologia 8, no. 5 (October 1995): 691–92. http://dx.doi.org/10.1177/197140099500800508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Luijten, Peter R., and Dennis W. J. Klomp. "High field MRI in clinical practice." Drug Discovery Today: Technologies 8, no. 2-4 (June 2011): e103-e108. http://dx.doi.org/10.1016/j.ddtec.2011.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kus, G., P. David, and O. De Witte. "Evaluation of Intracranial Tumor Resection: Intraoperative Low-Field MRI versus High-Field MRI." World Neurosurgery 80, no. 5 (November 2013): 658. http://dx.doi.org/10.1016/j.wneu.2013.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Joseph Yuan-Mou, Richard Beare, Marc L. Seal, A. Simon Harvey, Vicki A. Anderson, and Wirginia J. Maixner. "A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography." Journal of Neurosurgery: Pediatrics 19, no. 5 (May 2017): 592–605. http://dx.doi.org/10.3171/2016.11.peds16312.

Full text
Abstract:
OBJECTIVECharacterization of intraoperative white matter tract (WMT) shift has the potential to compensate for neuronavigation inaccuracies using preoperative brain imaging. This study aimed to quantify and characterize intraoperative WMT shift from the global hemispheric to the regional tract-based scale and to investigate the impact of intraoperative factors (IOFs).METHODSHigh angular resolution diffusion imaging (HARDI) diffusion-weighted data were acquired over 5 consecutive perioperative time points (MR1 to MR5) in 16 epilepsy patients (8 male; mean age 9.8 years, range 3.8–15.8 years) using diagnostic and intraoperative 3-T MRI scanners. MR1 was the preoperative planning scan. MR2 was the first intraoperative scan acquired with the patient's head fixed in the surgical position. MR3 was the second intraoperative scan acquired following craniotomy and durotomy, prior to lesion resection. MR4 was the last intraoperative scan acquired following lesion resection, prior to wound closure. MR5 was a postoperative scan acquired at the 3-month follow-up visit. Ten association WMT/WMT segments and 1 projection WMT were generated via a probabilistic tractography algorithm from each MRI scan. Image registration was performed through pairwise MRI alignments using the skull segmentation. The MR1 and MR2 pairing represented the first surgical stage. The MR2 and MR3 pairing represented the second surgical stage. The MR3 and MR4 (or MR5) pairing represented the third surgical stage. The WMT shift was quantified by measuring displacements between a pair of WMT centerlines. Linear mixed-effects regression analyses were carried out for 6 IOFs: head rotation, craniotomy size, durotomy size, resected lesion volume, presence of brain edema, and CSF loss via ventricular penetration.RESULTSThe average WMT shift in the operative hemisphere was 2.37 mm (range 1.92–3.03 mm) during the first surgical stage, 2.19 mm (range 1.90–3.65 mm) during the second surgical stage, and 2.92 mm (range 2.19–4.32 mm) during the third surgical stage. Greater WMT shift occurred in the operative than the nonoperative hemisphere, in the WMTs adjacent to the surgical lesion rather than those remote to it, and in the superficial rather than the deep segment of the pyramidal tract. Durotomy size and resection size were significant, independent IOFs affecting WMT shift. The presence of brain edema was a marginally significant IOF. Craniotomy size, degree of head rotation, and ventricular penetration were not significant IOFs affecting WMT shift.CONCLUSIONSWMT shift occurs noticeably in tracts adjacent to the surgical lesions, and those motor tracts superficially placed in the operative hemisphere. Intraoperative probabilistic HARDI tractography following craniotomy, durotomy, and lesion resection may compensate for intraoperative WMT shift and improve neuronavigation accuracy.
APA, Harvard, Vancouver, ISO, and other styles
15

Wattjes, Mike P., and Frederik Barkhof. "High field MRI in the diagnosis of multiple sclerosis: high field–high yield?" Neuroradiology 51, no. 5 (March 11, 2009): 279–92. http://dx.doi.org/10.1007/s00234-009-0512-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yoo, H. "Fast B1 field localisation in high‐field MRI systems." Electronics Letters 49, no. 14 (July 2013): 866–68. http://dx.doi.org/10.1049/el.2013.1335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Soldati, Enrico, Jerome Vicente, Daphne Guenoun, David Bendahan, and Martine Pithioux. "Validation and Optimization of Proximal Femurs Microstructure Analysis Using High Field and Ultra-High Field MRI." Diagnostics 11, no. 9 (September 2, 2021): 1603. http://dx.doi.org/10.3390/diagnostics11091603.

Full text
Abstract:
Trabecular bone could be assessed non-invasively using MRI. However, MRI does not yet provide resolutions lower than trabecular thickness and a comparative analysis between different MRI sequences at different field strengths and X-ray microtomography (μCT) is still missing. In this study, we compared bone microstructure parameters and bone mineral density (BMD) computed using various MRI approaches, i.e., turbo spin echo (TSE) and gradient recalled echo (GRE) images used at different magnetic fields, i.e., 7T and 3T. The corresponding parameters computed from μCT images and BMD derived from dual-energy X-ray absorptiometry (DXA) were used as the ground truth. The correlation between morphological parameters, BMD and fracture load assessed by mechanical compression tests was evaluated. Histomorphometric parameters showed a good agreement between 7T TSE and μCT, with 8% error for trabecular thickness with no significative statistical difference and a good intraclass correlation coefficient (ICC > 0.5) for all the extrapolated parameters. No correlation was found between DXA-BMD and all morphological parameters, except for trabecular interconnectivity (R2 > 0.69). Good correlation (p-value < 0.05) was found between failure load and trabecular interconnectivity (R2 > 0.79). These results suggest that MRI could be of interest for bone microstructure assessment. Moreover, the combination of morphological parameters and BMD could provide a more comprehensive view of bone quality.
APA, Harvard, Vancouver, ISO, and other styles
18

Kakugawa, S., N. Hino, A. Komura, M. Kitamura, H. Takeshima, T. Yatsuo, and H. Tazaki. "Shielding Stray Magnetic Fields of Open High Field MRI Magnets." IEEE Transactions on Appiled Superconductivity 14, no. 2 (June 2004): 1639–42. http://dx.doi.org/10.1109/tasc.2004.831023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kakugawa, S., N. Hino, A. Komura, M. Kitamura, H. Takeshima, T. Yatsuo, and H. Tazaki. "Shielding stray magnetic fields of open high field MRI magnets." IEEE Transactions on Applied Superconductivity 14, no. 2 (2004): 1639–42. http://dx.doi.org/10.1109/tasc.2004.931023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ibrahim, Tamer S., Yik-Kiong Hue, and Lin Tang. "Understanding and manipulating the RF fields at high field MRI." NMR in Biomedicine 22, no. 9 (July 17, 2009): 927–36. http://dx.doi.org/10.1002/nbm.1406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nakada, Tsutomu. "Clinical application of high and ultra high-field MRI." Brain and Development 29, no. 6 (July 2007): 325–35. http://dx.doi.org/10.1016/j.braindev.2006.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vaughan, J. T., G. Adriany, C. J. Snyder, J. Tian, T. Thiel, L. Bolinger, H. Liu, L. DelaBarre, and K. Ugurbil. "Efficient high-frequency body coil for high-field MRI." Magnetic Resonance in Medicine 52, no. 4 (2004): 851–59. http://dx.doi.org/10.1002/mrm.20177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Grissom, William A., Laura Sacolick, and Mika W. Vogel. "Improving high-field MRI using parallel excitation." Imaging in Medicine 2, no. 6 (December 2010): 675–93. http://dx.doi.org/10.2217/iim.10.62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Donnelly, Lane F., Jeffrey B. Betts, and Bradley L. Fricke. "Skimboarder's Toe: Findings on High-Field MRI." American Journal of Roentgenology 184, no. 5 (May 2005): 1481–85. http://dx.doi.org/10.2214/ajr.184.5.01841481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Abduljalil, Amir M., and Pierre-Marie L. Robitaille. "Macroscopic Susceptibility in Ultra High Field MRI." Journal of Computer Assisted Tomography 23, no. 6 (November 1999): 832–41. http://dx.doi.org/10.1097/00004728-199911000-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Voorhees, Andrew P., Leon C. Ho, Ning-Jiun Jan, Huong Tran, Yolandi van der Merwe, Kevin Chan, and Ian A. Sigal. "Whole-globe biomechanics using high-field MRI." Experimental Eye Research 160 (July 2017): 85–95. http://dx.doi.org/10.1016/j.exer.2017.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wilbur, Andrew C., Bo Gyi, and Sigrida A. Renigers. "High-field MRI of primary gallbladder carcinoma." Gastrointestinal Radiology 13, no. 1 (December 1988): 142–44. http://dx.doi.org/10.1007/bf01889043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Novak, Vera, A. M. Abduljalil, P. Novak, and P. M. Robitaille. "High-resolution ultrahigh-field MRI of stroke." Magnetic Resonance Imaging 23, no. 4 (May 2005): 539–48. http://dx.doi.org/10.1016/j.mri.2005.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sanal, Hatice Tuba, Fabiano Cardoso, Lina Chen, and Christine Chung. "Office-based Versus High-field Strength MRI." Sports Medicine and Arthroscopy Review 17, no. 1 (March 2009): 31–39. http://dx.doi.org/10.1097/jsa.0b013e3181960288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Alon, Leeor, Riccardo Lattanzi, Karthik Lakshmanan, Ryan Brown, Cem M. Deniz, Daniel K. Sodickson, and Christopher M. Collins. "Transverse slot antennas for high field MRI." Magnetic Resonance in Medicine 80, no. 3 (February 1, 2018): 1233–42. http://dx.doi.org/10.1002/mrm.27095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

de Leeuw, Hendrik, Bertine L. Stehouwer, Chris J. G. Bakker, Dennis W. J. Klomp, Paul J. van Diest, Peter R. Luijten, Peter R. Seevinck, Maurice A. A. J. van den Bosch, Max A. Viergever, and Wouter B. Veldhuis. "Detecting breast microcalcifications with high-field MRI." NMR in Biomedicine 27, no. 5 (February 17, 2014): 539–46. http://dx.doi.org/10.1002/nbm.3089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pandit, Prachi, Yi Qi, Jennifer Story, Kevin F. King, and G. Allan Johnson. "Multishot PROPELLER for high-field preclinical MRI." Magnetic Resonance in Medicine 64, no. 1 (May 14, 2010): 47–53. http://dx.doi.org/10.1002/mrm.22376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

MAEDA, Hideaki, Masami URATA, and Kozo SATOH. "High magnetic field MRI system-superconducting magnet for the MRI system." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 25, no. 6 (1990): 362–72. http://dx.doi.org/10.2221/jcsj.25.362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pääkkö, E., H. Reinikainen, E. L. Lindholm, and T. Rissanen. "Low-field vs. high-field MRI in diagnosing breast disorders." Clinical Imaging 30, no. 1 (January 2006): 71. http://dx.doi.org/10.1016/j.clinimag.2005.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pääkkö, Eija, Heli Reinikainen, Eija-Leena Lindholm, and Tarja Rissanen. "Low-field versus high-field MRI in diagnosing breast disorders." European Radiology 15, no. 7 (February 12, 2005): 1361–68. http://dx.doi.org/10.1007/s00330-005-2664-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aussenhofer, S. A., and A. G. Webb. "High-permittivity solid ceramic resonators for high-field human MRI." NMR in Biomedicine 26, no. 11 (July 4, 2013): 1555–61. http://dx.doi.org/10.1002/nbm.2990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Aidara, Cherif Mohamadou, Caroline Magne, Philomene Kouna, Gaelle Ebinda Mipinda, Abdoulaye Dione Diop, Abdoulaye Ndoye Diop, and Sokhna Ba. "High Field MRI in Human African Trypanosomiasis (HAT)." Open Journal of Radiology 07, no. 03 (2017): 190–98. http://dx.doi.org/10.4236/ojrad.2017.73021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Johnson-Groh, Mara. "Highlighting versatile contrast agents for high-field MRI." Scilight 2022, no. 3 (January 21, 2022): 031106. http://dx.doi.org/10.1063/10.0009372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kangarlu, Allahyar, Brian A. Baertlein, Robert Lee, Tamer Ibrahim, Lining Yang, Amir M. Abduljalil, and Pierre-Marie L. Robitaille. "Dielectric Resonance Phenomena in Ultra High Field MRI." Journal of Computer Assisted Tomography 23, no. 6 (November 1999): 821–31. http://dx.doi.org/10.1097/00004728-199911000-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Son, H. W., Y. K. Cho, A. Gopinath, J. T. Vaughan, C. H. Lee, and H. Yoo. "shimming with SAR reduction in high-field MRI." Journal of Electromagnetic Waves and Applications 27, no. 12 (July 18, 2013): 1521–24. http://dx.doi.org/10.1080/09205071.2013.817958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sattarov, Akhdiyor, Peter McIntyre, and Leszek Motowidlo. "High-Field Open MRI for Breast Cancer Screening." IEEE Transactions on Applied Superconductivity 25, no. 3 (June 2015): 1–5. http://dx.doi.org/10.1109/tasc.2014.2377049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Chunzhong, Tianqing Chang, Ming Rong, Yinming Dai, Zhipeng Ni, Lankai Li, and Qiuliang Wang. "Optimal Design for High-Field MRI Superconducting Magnet." IEEE Transactions on Applied Superconductivity 21, no. 3 (June 2011): 2245–49. http://dx.doi.org/10.1109/tasc.2010.2090324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kilsdonk, I. D., M. P. Wattjes, and J. J. Geurts. "Ultra-high field MRI: looking through the 'macroscope'." Journal of Neurology, Neurosurgery & Psychiatry 85, no. 1 (July 11, 2013): 4. http://dx.doi.org/10.1136/jnnp-2013-305601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Warner, Rory. "Ultra-high field magnets for whole-body MRI." Superconductor Science and Technology 29, no. 9 (August 8, 2016): 094006. http://dx.doi.org/10.1088/0953-2048/29/9/094006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Birkholz, Torsten, Markus Schmid, Christopher Nimsky, Jürgen Schüttler, and Bernd Schmitz. "ECG Artifacts During Intraoperative High-Field MRI Scanning." Journal of Neurosurgical Anesthesiology 16, no. 4 (October 2004): 271–76. http://dx.doi.org/10.1097/00008506-200410000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fagan, A. J. "SP-0404: Emerging possibilities with high field MRI." Radiotherapy and Oncology 106 (March 2013): S155. http://dx.doi.org/10.1016/s0167-8140(15)32710-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tieng, Q. M., V. Vegh, and I. M. Brereton. "Minimum Stored Energy High-Field MRI Superconducting Magnets." IEEE Transactions on Applied Superconductivity 19, no. 4 (August 2009): 3645–52. http://dx.doi.org/10.1109/tasc.2009.2015954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Seeley, Juliette A., Song-I. Han, and Alexander Pines. "Remotely detected high-field MRI of porous samples." Journal of Magnetic Resonance 167, no. 2 (April 2004): 282–90. http://dx.doi.org/10.1016/j.jmr.2003.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Forstmann, Birte U., Bethany R. Isaacs, and Yasin Temel. "Ultra High Field MRI-Guided Deep Brain Stimulation." Trends in Biotechnology 35, no. 10 (October 2017): 904–7. http://dx.doi.org/10.1016/j.tibtech.2017.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hurshkainen, Anna, Constantin Simovski, and Stanislav Glybovski. "Passive Decoupling Techniques in Ultra-High Field MRI." Journal of Physics: Conference Series 1092 (September 2018): 012049. http://dx.doi.org/10.1088/1742-6596/1092/1/012049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography