Academic literature on the topic 'High flux solar simulator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High flux solar simulator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High flux solar simulator"

1

Moore, John. "High-flux solar simulator lights up." Physics World 18, no. 12 (2005): 14. http://dx.doi.org/10.1088/2058-7058/18/12/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Qingzhe, Dongliang Wu, Runze Wang, Boying Lin, Xiyuan Li, and Yantong Xu. "Research on background heat flux of the thermal balance test system based on solar simulator." Journal of Physics: Conference Series 2882, no. 1 (2024): 012083. http://dx.doi.org/10.1088/1742-6596/2882/1/012083.

Full text
Abstract:
Abstract In the thermal balance test system based on the solar simulator, the background heat flux of the test system can cause additional heating to the spacecraft, reducing the effectiveness of the thermal test. Hence, it is necessary to conduct in-depth research on the impact of background heat flux through experimental and numerical methods. This paper first measures the background heat flux of the thermal test system based on the KM6 large-scale solar simulator experimentally, which is 35W/m2. Then, a simulation model of the thermal balance test system is established to clarify that the b
APA, Harvard, Vancouver, ISO, and other styles
3

Codd, Daniel S., Andrew Carlson, Jennifer Rees, and Alexander H. Slocum. "A low cost high flux solar simulator." Solar Energy 84, no. 12 (2010): 2202–12. http://dx.doi.org/10.1016/j.solener.2010.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Milanese, Marco, Gianpiero Colangelo, and Arturo de Risi. "Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications." Energies 14, no. 11 (2021): 3124. http://dx.doi.org/10.3390/en14113124.

Full text
Abstract:
In the last few years, several studies have been carried out on concentrating solar thermal and thermochemical applications. These studies can be further enhanced by means of high-flux solar simulators (HFSS), since they allow the development of experimental tests under controlled irradiance conditions, regardless of sunshine. In this work, a new high-flux solar simulator, capable of reaching levels of irradiance higher than 100 W/cm2 (1000 suns), has been designed, built and characterized. This simulator is composed of 8 ellipsoidal specular reflectors, arranged face-down on a horizontal plan
APA, Harvard, Vancouver, ISO, and other styles
5

Li, J., J. Gonzalez-Aguilar, and M. Romero. "Line-concentrating Flux Analysis of 42kWe High-flux Solar Simulator." Energy Procedia 69 (May 2015): 132–37. http://dx.doi.org/10.1016/j.egypro.2015.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sobek, Szymon, and Sebastian Werle. "Comparative Review of Artificial Light Sources for Solar-Thermal Biomass Conversion Research Applications." Ecological Chemistry and Engineering S 26, no. 3 (2019): 443–53. http://dx.doi.org/10.1515/eces-2019-0033.

Full text
Abstract:
Abstract In recent years solar-thermal methods of waste biomass conversion are promptly gaining on attention. For researchers working in areas that suffer from lack of natural solar power, the choice of proper solar simulator for the study is crucial. Solar simulator consist of artificial light source enclosed in proper housing with optical and cooling system, powered by dedicated power supply. Solar simulators are not only granting independence from external conditions, yet provide possibility of research expand due to tuneable output power and emissive spectrum. Over the years, solar simulat
APA, Harvard, Vancouver, ISO, and other styles
7

Chai, Kwan-Kyo, Hyun-Jin Lee, Hwan-Ki Yoon, Jong-Kyu Kim, Yong-Heack Kang, and Sung-Wook Lee. "Optical Characterization of a High-Flux Solar Thermal Simulator." Journal of the Korean Solar Energy Society 35, no. 3 (2015): 65–71. http://dx.doi.org/10.7836/kses.2015.35.3.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Jieyang, and Meng Lin. "Unified design guidelines for high flux solar simulator with controllable flux vector." Applied Energy 281 (January 2021): 116083. http://dx.doi.org/10.1016/j.apenergy.2020.116083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Wujun, Lukas Aichmayer, Jorge Garrido, and Björn Laumert. "Development of a Fresnel lens based high-flux solar simulator." Solar Energy 144 (March 2017): 436–44. http://dx.doi.org/10.1016/j.solener.2017.01.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Jifeng, Juntao Wang, Yisen Niu, et al. "Flexible high flux solar simulator based on optical fiber bundles." Solar Energy 193 (November 2019): 576–83. http://dx.doi.org/10.1016/j.solener.2019.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "High flux solar simulator"

1

Rodrigues, Julia da Rosa Howat. "Projeto e construção de um simulador solar concentrador." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-25082016-093701/.

Full text
Abstract:
Segundo o Atlas Brasileiro de Energia Solar, apesar das diferentes características climáticas observadas no Brasil, pode-se constatar que a média anual de irradiação solar global apresenta boa uniformidade e elevados índices por todo o país. Os valores desta grandeza em quase toda a extensão do território brasileiro (4200-6700 Wh/m2/dia) são superiores aos da maioria dos países da União Europeia, como Alemanha (900-1250 Wh/m2/dia), França (900-1650 Wh/m2/dia) e Espanha (1200-1850 Wh/m2/dia), onde projetos para aproveitamento de energia solar, alguns contando com fortes incentivos governamentai
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Wujun. "Development of an Impinging Receiver for Solar Dish-Brayton Systems." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177531.

Full text
Abstract:
A new receiver concept utilizing impinging jet cooling technology has been developed for a small scale solar dish-Brayton system. In a typical impinging receiver design, the jet nozzles are distributed evenly around the cylindrical absorber wall above the solar peak flux region for managing the temperature at an acceptable level. The absorbed solar irradiation is partially lost to the ambient by radiation and natural convection heat transfer, the major part is conducted through the wall and taken away by the impingement jets to drive a gas turbine. Since the thermal power requirement of a 5 kW
APA, Harvard, Vancouver, ISO, and other styles
3

Pozzobon, Victor. "Biomass gasification under high solar heat flux." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2015. http://www.theses.fr/2015EMAC0004/document.

Full text
Abstract:
L'énergie solaire concentrée est une source d'énergie alternative pour la conversion thermochimique de biomasse en vecteurs énergétiques ou en matériaux à haute valeur ajoutée. La production d'un gaz de synthèse à partir de biomasse lignocellulosique en est un exemple, de même que la production de résidus carbonés à propriétés contrôlées. Ces travaux portent sur l'étude du comportement d'un échantillon de hêtre thermiquement épais sous de hautes densités de flux solaire (supérieures à 1000 kW/m²). Deux approches ont été développées en parallèles : une étude expérimentale et le développement d'
APA, Harvard, Vancouver, ISO, and other styles
4

Steinfeld, Jeffrey I. "High-flux solar photon processes: opportunities for applications." MIT Energy Lab, 1992. http://hdl.handle.net/1721.1/27220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lenert, Andrej. "Nanofluid-based receivers for high-temperature, high-flux direct solar collectors." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61881.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 87-88).<br>Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar radiation can be transferred into a fluid medium, which subsequently reduces the concentrated heat at the surface. Nanofluid-based direct solar receivers, where nanoparticles in a liquid medi
APA, Harvard, Vancouver, ISO, and other styles
6

Flesch, Jonathan [Verfasser], and T. [Akademischer Betreuer] Wetzel. "LBE-cooled tube receiver performance - Design aspects and high-flux operation in a solar furnace / Jonathan Flesch ; Betreuer: T. Wetzel." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/122622198X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zein, Waël. "Etude d'un capteur absorbant l'energie solaire par le fluide caloporteur : application au chauffage des piscines de plein-air." Poitiers, 1986. http://www.theses.fr/1986POIT2289.

Full text
Abstract:
Modelisation des transferts radiatifs pour les differents composants du capteur. Resolution numerique des equations permettant d'obtenir les lois d'evolution des performances du capteur en fonction de ces caracteristiques geometriques, des conditions radiatives et meteorologiques d'un site. Verification experimentale a l'aide d'un simulateur de rayonnement. Application envisagee, au chauffage d'une piscine en plein-air. Optimisation des conditions de fonctionnement et analyse economique du systeme de chauffage
APA, Harvard, Vancouver, ISO, and other styles
8

Dong, Xue. "Simulating high flux solar radiation and assessing its influence on a sooty flame." Thesis, 2016. http://hdl.handle.net/2440/112471.

Full text
Abstract:
Integrating concentrated solar thermal energy into fossil-fuels for the production of power/clean fuels is receiving growing attention as the combination of the two energy sources can provide lower emissions of carbon and other pollutants, lower cost, and continuous supply. Various types of hybrid concepts have been proposed. However, all of these concepts employ stand-alone solar receivers and standalone combustors. The University of Adelaide has developed an alternative approach with which to fully integrate a combustor into a solar cavity receiver. This offers the potential for significant
APA, Harvard, Vancouver, ISO, and other styles
9

Mouzouris, Michael. "A high-flux solar concentrating system." Thesis, 2011. http://hdl.handle.net/10413/5091.

Full text
Abstract:
This research investigates the collection of concentrating solar energy and its transmission through optical fibres for use in high temperature applications such as lunar in-situ resource utilisation (ISRU) programmes, solar power generation and solar surgery. A prototype collector, known as the Fibre Optic Concentrating Utilisation System (FOCUS), has been developed and is capable of delivering high energy fluxes to a remote target. Salient performance results include flux concentrations approaching 1000 suns with an overall optical efficiency of 13%, measured from the inlet of the collector
APA, Harvard, Vancouver, ISO, and other styles
10

(5929988), Shih-Chieh Liu. "Test of Decay Rate Parameter Variation due to Antineutrino Interactions." Thesis, 2019.

Find full text
Abstract:
High precision measurements of a weak interaction decay were conducted to search for possible variation of the decay rate parameter caused by an antineutrino flux. The experiment searched for variation of the <sup>54</sup>Mn electron capture decay rate parameter to a level of precision of 1 part in ∼10<sup>5</sup> by comparing the difference between the decay rate in the presence of an antineutrino flux ∼3×10<sup>12</sup> cm<sup>-2</sup>sec<sup>-1</sup> and no flux measurements. The experiment is located 6.5 meters from the reactor core of the High Flux Isotope Reactor (HFIR) in Oak Ridge Nati
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "High flux solar simulator"

1

S, Mason Lee, Strumpf Hal J, and United States. National Aeronautics and Space Administration., eds. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperature shield. National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

S, Mason Lee, Strumpf Hal J, and United States. National Aeronautics and Space Administration., eds. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperature shield. National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Mason Lee, Strumpf Hal J, and United States. National Aeronautics and Space Administration., eds. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperature shield. National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

S, Mason Lee, Strumpf Hal J, and United States. National Aeronautics and Space Administration., eds. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperature shield. National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Center, NASA Glenn Research, ed. High energy density regenerative fuel cell systems for terrestrial applications. National Aeronautics and Space Administration, Glenn Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Soules Jack, and Lewis Research Center, eds. Design and fabrication of a dielectric total internal reflecting solar concentrator and associated flux extractor for extreme high temperature (2500K) applications. National Aeronautics and Space Administration, Lewis Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Early results from solar dynamic space power system testing. National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

The IEA/SSPS high flux experiment: Testing the advanced sodium receiver at heat fluxes up to 2.5 MW/m². Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schiel, W., and M. Geyer. The Iea/Ssps High Flux Experiment: Testing the Advanced Sodium Receiver at Heat Fluxes Up to 2.5 Mw/M2. Springer, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "High flux solar simulator"

1

Ekman, Ben M., Geoffrey Brooks, and M. Akbar Rhamdhani. "Development of High Flux Solar Simulators for Solar Thermal Research." In Energy Technology 2015. John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093220.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ekman, Ben M., Geoffrey Brooks, and M. Akbar Rhamdhani. "Development of High Flux Solar Simulators for Solar Thermal Research." In Energy Technology 2015. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48220-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schiel, W., and H. Jacobs. "High Flux Experiment at SSPS." In Solar Thermal Central Receiver Systems. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82910-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scime, Earl E., Samuel J. Bame, John L. Phillips, and Andre Balogh. "Latitudinal Variations in the Solar Wind Electron Heat Flux." In The High Latitude Heliosphere. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0167-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, M. F., D. J. Rodgers, R. P. Rijnbeek, D. J. Southwood, A. J. Coates, and A. D. Johnstone. "Plasma and Field Observations with High Time Resolution in Flux Transfer Events." In Solar Wind — Magnetosphere Coupling. Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4722-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Furenlid, Ingemar. "Solar Flux Atlas from 296 to 1300 nm." In The Impact of Very High S/N Spectroscopy on Stellar Physics. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2937-1_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Govind, Ashish Sharma, Gazal Sharma, Shankita Bhardwaj, Surender Verma, and B. C. Chauhan. "Bounds on Sterile Neutrino Component in the Solar Neutrino Flux." In XXII DAE High Energy Physics Symposium. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Möckel, H. J., W. Knauf, S. Fiechter, and H. Tributsch. "Experiments on the Decomposition of Toxic and Hazardous Chemicals under High Pressure and High Temperature Light Flux Conditions." In Solar Thermal Energy Utilization. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-52342-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bockelmann, D., R. Goslich, M. Hilgendorff, and D. Bahnemann. "Photocatalytic Detoxification at high Photon Flux and elevated Temperatures." In Solar Thermal Energy Utilization. German Studies on Technology and Application. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84799-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blanco, M., and M. Silva. "Evaluation and Qualification of the HFD Bar During the ASR High Flux Experiment." In Solar Thermal Central Receiver Systems. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82910-9_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "High flux solar simulator"

1

Bader, Roman, Gaël Levêque, Sophia Haussener, and Wojciech Lipiński. "High-flux solar simulator technology." In Optics for Solar Energy. OSA, 2016. http://dx.doi.org/10.1364/ose.2016.som3c.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bader, Roman, Lutz Schmidt, Sophia Haussener, and Wojciech Lipiński. "A 45 kWe Multi-Source High-Flux Solar Simulator." In Optics for Solar Energy. OSA, 2014. http://dx.doi.org/10.1364/ose.2014.rw4b.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aichmayer, Lukas, Jorge Garrido, and Björn Laumert. "Performance improvements of the KTH high-flux solar simulator." In SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2017. http://dx.doi.org/10.1063/1.4984530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

King, Peter, Elie Merlière, Clément Gosteli, et al. "Design of a low-cost high-flux solar simulator." In THE INTERNATIONAL CONFERENCE ON BATTERY FOR RENEWABLE ENERGY AND ELECTRIC VEHICLES (ICB-REV) 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0148835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pottas, Johannes J., Mustafa Habib, and Wojciech Lipiński. "Photogrammetric Measurement and Alignment of Radiation Modules in a High-Flux Solar Simulator." In Optics for Solar Energy. OSA, 2018. http://dx.doi.org/10.1364/ose.2018.ow3d.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wieghardt, Kai, Dmitrij Laaber, Patrick Hilger, Volkmar Dohmen, Karl-Heinz Funken, and Bernhard Hoffschmidt. "Engineering and erection of a 300kW high-flux solar simulator." In SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2017. http://dx.doi.org/10.1063/1.4984507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Lifeng, Bo Wang, Johannes Pottas, José Zapata, and Wojciech Lipiński. "Application of a Compound Parabolic Concentrator to a Multi-Source High-Flux Solar Simulator." In Optics for Solar Energy. OSA, 2018. http://dx.doi.org/10.1364/ose.2018.ow3d.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aichmayer, Lukas, Wujun Wang, Jorge Garrido, and Björn Laumert. "Experimental flux measurement of a high-flux solar simulator using a Lambertian target and a thermopile flux sensor." In SOLARPACES 2015: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2016. http://dx.doi.org/10.1063/1.4949211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rowe, Scott C., Mark A. Wallace, Allan Lewandowski, et al. "Evidence of an Observer Effect Predicted in High-Flux Solar Simulators, but not High-Flux Solar Furnaces." In Optics for Solar Energy. OSA, 2017. http://dx.doi.org/10.1364/ose.2017.rth2b.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boswell, Angus, Lane Hunter-Leiski, Charles Wetaski, Muhammad Taha Manzoor, and Melanie Tetreault-Friend. "Design of a novel compact single-source high-flux solar simulator." In SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0085840.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "High flux solar simulator"

1

Ignatiev, A. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10146955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ignatiev, A. Photodegradation effects in materials exposed to high flux solar and solar simulated radiation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5340105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lorents, D. C., S. Narang, D. C. Huestis, et al. High-flux solar photon processes. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10158450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lorents, D. C., S. Narang, D. C. Huestis, et al. High-flux solar photon processes. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5118363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steinfeld, J. I., S. L. Coy, H. Herzog, et al. High-flux solar photon processes: Opportunities for applications. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10151540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Steinfeld, J. I., S. L. Coy, H. Herzog, et al. High-flux solar photon processes: Opportunities for applications. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5248701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crooker, N. U., D. E. Larson, S. W. Kahler, S. M. Lamassa, and H. E. Spence. Suprathermal Electron Isotropy in High-Beta Solar Wind and Its Role in Heat Flux Dropouts. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada423089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mondragon, Tomas, Jeffrey Allen, Reena Patel, and Oliver-Denzil Taylor. Comparison of numerical simulations of heat-induced stress in basalt. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/49191.

Full text
Abstract:
Energy losses due to excessive noise and heat are primary liabilities in traditional mining processes. Some of the currently researched methods to improve these liabilities involve heating the rock to induce internal stress fractures that make it easier to extract or remove rock with traditional mining equipment. Physical experimentation has yielded useful data that have been applied to numerical simulations of the heating and fracturing of rock, and multiple such simulations have been developed in the commercial multiphysics simulator COMSOL. Since COMSOL is not widely available on DoD high-p
APA, Harvard, Vancouver, ISO, and other styles
9

DiDomizio, Matthew, and Jonathan Butta. Measurement of Heat Transfer and Fire Damage Patterns on Walls for Fire Model Validation. UL Research Institutes, 2024. http://dx.doi.org/10.54206/102376/hnkr9109.

Full text
Abstract:
Fire models are presently employed by fire investigators to make predictions of fire dynamics within structures. Predictions include the evolution of gas temperatures and velocities, smoke movement, fire growth and spread, and thermal exposures to surrounding objects, such as walls. Heat flux varies spatially over exposed walls based on the complex thermal interactions within the fire environment, and is the driving factor for thermally induced fire damage. A fire model predicts the temperature and heat transfer through walls based on field predictions, such as radiative and convective heat fl
APA, Harvard, Vancouver, ISO, and other styles
10

High-Flux Microchannel Solar Receiver (Fact Sheet). Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1053316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!