Journal articles on the topic 'High order convergence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High order convergence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vaarmann, Otu. "HIGH ORDER ITERATIVE METHODS FOR DECOMPOSITION‐COORDINATION PROBLEMS." Technological and Economic Development of Economy 12, no. 1 (March 31, 2006): 56–61. http://dx.doi.org/10.3846/13928619.2006.9637723.
Full textAlbizuri, F. Xabier, Alicia d'Anjou, Manuel Graña, and J. Antonio Lozano. "Convergence Properties of High-order Boltzmann Machines." Neural Networks 9, no. 9 (December 1996): 1561–67. http://dx.doi.org/10.1016/s0893-6080(96)00026-3.
Full textBokanowski, Olivier, Athena Picarelli, and Christoph Reisinger. "High-order filtered schemes for time-dependent second order HJB equations." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 1 (January 2018): 69–97. http://dx.doi.org/10.1051/m2an/2017039.
Full textHemker, Pieter W., Grigorii I. Shishkin, and Lidia P. Shishkina. "High-order Time-accurate Schemes for Singularly Perturbed Parabolic Convection-diffusion Problems with Robin Boundary Conditions." Computational Methods in Applied Mathematics 2, no. 1 (2002): 3–25. http://dx.doi.org/10.2478/cmam-2002-0001.
Full textBehl, Ramandeep, Ioannis K. Argyros, and Fouad Othman Mallawi. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence." Mathematics 9, no. 12 (June 14, 2021): 1375. http://dx.doi.org/10.3390/math9121375.
Full textArtidiello, Santiago, Alicia Cordero, Juan R. Torregrosa, and María P. Vassileva. "Design of High-Order Iterative Methods for Nonlinear Systems by Using Weight Function Procedure." Abstract and Applied Analysis 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/289029.
Full textKiran, Quanita, and Tayyab Kamran. "Nadler’s type principle with high order of convergence." Nonlinear Analysis: Theory, Methods & Applications 69, no. 11 (December 2008): 4106–20. http://dx.doi.org/10.1016/j.na.2007.10.041.
Full textWang, Wen Kai, and Huan Xin Peng. "High-Order Distributed Consensus with One-Bit Adaptive Quantization." Advanced Materials Research 591-593 (November 2012): 1299–302. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.1299.
Full textBin Jebreen, Haifa. "Constructing a High-Order Globally Convergent Iterative Method for Calculating the Matrix Sign Function." Mathematical Problems in Engineering 2018 (June 21, 2018): 1–9. http://dx.doi.org/10.1155/2018/8973867.
Full textProinov, Petko D., and Maria T. Vasileva. "A New Family of High-Order Ehrlich-Type Iterative Methods." Mathematics 9, no. 16 (August 5, 2021): 1855. http://dx.doi.org/10.3390/math9161855.
Full textArgyros, Ioannis K., and Santhosh George. "Local convergence for some high convergence order Newton-like methods with frozen derivatives." SeMA Journal 70, no. 1 (July 24, 2015): 47–59. http://dx.doi.org/10.1007/s40324-015-0039-8.
Full textDu, Rui, Zhao-peng Hao, and Zhi-zhong Sun. "Lubich Second-Order Methods for Distributed-Order Time-Fractional Differential Equations with Smooth Solutions." East Asian Journal on Applied Mathematics 6, no. 2 (May 2016): 131–51. http://dx.doi.org/10.4208/eajam.020615.030216a.
Full textJENSEN, M. S. "HIGH CONVERGENCE ORDER FINITE ELEMENTS WITH LUMPED MASS MATRIX." International Journal for Numerical Methods in Engineering 39, no. 11 (June 15, 1996): 1879–88. http://dx.doi.org/10.1002/(sici)1097-0207(19960615)39:11<1879::aid-nme933>3.0.co;2-2.
Full textEzquerro, J. A., M. A. Hernández, and M. A. Salanova. "Construction of iterative processes with high order of convergence." International Journal of Computer Mathematics 69, no. 1-2 (January 1998): 191–201. http://dx.doi.org/10.1080/00207169808804717.
Full textRossi, Louis F. "Achieving High-Order Convergence Rates with Deforming Basis Functions." SIAM Journal on Scientific Computing 26, no. 3 (January 2005): 885–906. http://dx.doi.org/10.1137/s1064827503425286.
Full textWesternacher-Schneider, John Ryan. "Extremely high-order convergence in simulations of relativistic stars." Classical and Quantum Gravity 38, no. 14 (June 15, 2021): 145003. http://dx.doi.org/10.1088/1361-6382/ac0234.
Full textLiu, Xiaoji, and Zemeng Zuo. "A High-Order Iterate Method for ComputingAT,S(2)." Journal of Applied Mathematics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/741368.
Full textDing, Hengfei, and Changpin Li. "High-order algorithms for riesz derivative and their applications (IV)." Fractional Calculus and Applied Analysis 22, no. 6 (December 18, 2019): 1537–60. http://dx.doi.org/10.1515/fca-2019-0080.
Full textAbel, Ulrich. "High order algorithms for calculating roots." Mathematical Gazette 100, no. 549 (October 17, 2016): 420–28. http://dx.doi.org/10.1017/mag.2016.106.
Full textGraça, Mario Meireles, and Pedro Miguel Lima. "On High Order Barycentric Root-Finding Methods." TEMA (São Carlos) 17, no. 3 (December 20, 2016): 321. http://dx.doi.org/10.5540/tema.2016.017.03.0321.
Full textArgyros, Ioannis K., Santhosh George, and Á. Alberto Magreñán. "Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order." Journal of Computational and Applied Mathematics 282 (July 2015): 215–24. http://dx.doi.org/10.1016/j.cam.2014.12.023.
Full textDavis and Warnick. "High-order convergence with a low-order discretization of the 2-D MFIE." IEEE Antennas and Wireless Propagation Letters 3 (2004): 355–58. http://dx.doi.org/10.1109/lawp.2004.840254.
Full textAmorós, Cristina, Ioannis Argyros, Ruben González, Á. Magreñán, Lara Orcos, and Íñigo Sarría. "Study of a High Order Family: Local Convergence and Dynamics." Mathematics 7, no. 3 (February 28, 2019): 225. http://dx.doi.org/10.3390/math7030225.
Full textHaghani, F. Khaksar, and F. Soleymani. "A New High-Order Stable Numerical Method for Matrix Inversion." Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/830564.
Full textBehl, Ramandeep, Alicia Cordero, Juan R. Torregrosa, and Sonia Bhalla. "A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems." Mathematics 9, no. 17 (September 1, 2021): 2122. http://dx.doi.org/10.3390/math9172122.
Full textLiu, Xiaoji, and Naping Cai. "High-Order Iterative Methods for the DMP Inverse." Journal of Mathematics 2018 (May 7, 2018): 1–6. http://dx.doi.org/10.1155/2018/8175935.
Full textArgyros, Ioannis K., Ramandeep Behl, Daniel González, and S. S. Motsa. "Local convergence for multistep high order methods under weak conditions." Applicationes Mathematicae 47, no. 2 (2020): 293–304. http://dx.doi.org/10.4064/am2374-1-2019.
Full textGeorgiev, Pando, Panos Pardalos, and Andrzej Cichocki. "Algorithms with high order convergence speed for blind source extraction." Computational Optimization and Applications 38, no. 1 (May 18, 2007): 123–31. http://dx.doi.org/10.1007/s10589-007-9031-2.
Full textMoore, Kevin L., and YangQuan Chen. "ON MONOTONIC CONVERGENCE OF HIGH ORDER ITERATIVE LEARNING UPDATE LAWS." IFAC Proceedings Volumes 35, no. 1 (2002): 19–24. http://dx.doi.org/10.3182/20020721-6-es-1901.00989.
Full textLi, Bin, and Nan Wu. "Convergence Analysis of Gaussian SPAWN Under High-Order Graphical Models." IEEE Signal Processing Letters 27 (2020): 1725–29. http://dx.doi.org/10.1109/lsp.2020.3025066.
Full textBonito, Andrea, J. Manuel Cascón, Khamron Mekchay, Pedro Morin, and Ricardo H. Nochetto. "High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates." Foundations of Computational Mathematics 16, no. 6 (November 23, 2016): 1473–539. http://dx.doi.org/10.1007/s10208-016-9335-7.
Full textBeirão da Veiga, L., K. Lipnikov, and G. Manzini. "Convergence analysis of the high-order mimetic finite difference method." Numerische Mathematik 113, no. 3 (May 28, 2009): 325–56. http://dx.doi.org/10.1007/s00211-009-0234-6.
Full textLiu, Don, Weijia Kuang, and Andrew Tangborn. "High-Order Compact Implicit Difference Methods For Parabolic Equations in Geodynamo Simulation." Advances in Mathematical Physics 2009 (2009): 1–23. http://dx.doi.org/10.1155/2009/568296.
Full textSong, Chunlin, Changzhu Wei, Feng Yang, and Naigang Cui. "High-Order Sliding Mode-Based Fixed-Time Active Disturbance Rejection Control for Quadrotor Attitude System." Electronics 7, no. 12 (November 26, 2018): 357. http://dx.doi.org/10.3390/electronics7120357.
Full textBoutin, B., T. H. T. Nguyen, A. Sylla, S. Tran-Tien, and J. F. Coulombel. "High order numerical schemes for transport equations on bounded domains." ESAIM: Proceedings and Surveys 70 (2021): 84–106. http://dx.doi.org/10.1051/proc/202107006.
Full textBehl, Ramandeep, and Eulalia Martínez. "A New High-Order and Efficient Family of Iterative Techniques for Nonlinear Models." Complexity 2020 (January 30, 2020): 1–11. http://dx.doi.org/10.1155/2020/1706841.
Full textArtidiello, S., A. Cordero, Juan R. Torregrosa, and M. P. Vassileva. "Optimal High-Order Methods for Solving Nonlinear Equations." Journal of Applied Mathematics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/591638.
Full textZhou, Zhongguo, and Lin Li. "The high accuracy conserved splitting domain decomposition scheme for solving the parabolic equations." Applied Mathematics and Nonlinear Sciences 3, no. 2 (December 31, 2018): 583–92. http://dx.doi.org/10.2478/amns.2018.2.00045.
Full textBehl, Ramandeep, and Ioannis K. Argyros. "Local Convergence for Multi-Step High Order Solvers under Weak Conditions." Mathematics 8, no. 2 (February 2, 2020): 179. http://dx.doi.org/10.3390/math8020179.
Full textArgyros, Ioannis, Ramandeep Behl, and S. S. Motsa. "Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative." Algorithms 8, no. 4 (November 20, 2015): 1076–87. http://dx.doi.org/10.3390/a8041076.
Full textAntona, Rubén, Renato Vacondio, Diego Avesani, Maurizio Righetti, and Massimiliano Renzi. "Towards a High Order Convergent ALE-SPH Scheme with Efficient WENO Spatial Reconstruction." Water 13, no. 17 (September 4, 2021): 2432. http://dx.doi.org/10.3390/w13172432.
Full textHe, Fangchao. "Optimal convergence rates of high order Parzen windows with unbounded sampling." Statistics & Probability Letters 92 (September 2014): 26–32. http://dx.doi.org/10.1016/j.spl.2014.04.023.
Full textXu, Meng, Linze Song, Kai Song, and Qiang Shi. "Convergence of high order perturbative expansions in open system quantum dynamics." Journal of Chemical Physics 146, no. 6 (February 14, 2017): 064102. http://dx.doi.org/10.1063/1.4974926.
Full textHayakawa, Kantaro, and Yuusuke Iso. "High-order uniform convergence estimation of boundary solutions for Laplace's equation." Publications of the Research Institute for Mathematical Sciences 27, no. 2 (1991): 333–45. http://dx.doi.org/10.2977/prims/1195169841.
Full textWang, Xia, and Liping Liu. "Modified Ostrowski’s method with eighth-order convergence and high efficiency index." Applied Mathematics Letters 23, no. 5 (May 2010): 549–54. http://dx.doi.org/10.1016/j.aml.2010.01.009.
Full textFernández-Torres, Gustavo. "Derivative free iterative methods with memory of arbitrary high convergence order." Numerical Algorithms 67, no. 3 (December 4, 2013): 565–80. http://dx.doi.org/10.1007/s11075-013-9808-6.
Full textShishkin, G. I. "ROBUST NOVEL HIGH-ORDER ACCURATE NUMERICAL METHODS FOR SINGULARLY PERTURBED CONVECTION‐DIFFUSION PROBLEMS." Mathematical Modelling and Analysis 10, no. 4 (December 31, 2005): 393–412. http://dx.doi.org/10.3846/13926292.2005.9637296.
Full textLei, Siu-Long, Xu Chen, and Xinhe Zhang. "Multilevel Circulant Preconditioner for High-Dimensional Fractional Diffusion Equations." East Asian Journal on Applied Mathematics 6, no. 2 (May 2016): 109–30. http://dx.doi.org/10.4208/eajam.060815.180116a.
Full textChicharro, Francisco I., Alicia Cordero, Neus Garrido, and Juan R. Torregrosa. "Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications." Mathematics 7, no. 12 (December 5, 2019): 1194. http://dx.doi.org/10.3390/math7121194.
Full textSun, Zhi-Zhong. "A High-Order Difference Scheme for a Nonlocal Boundary-Value Problem for the Heat Equation." Computational Methods in Applied Mathematics 1, no. 4 (2001): 398–414. http://dx.doi.org/10.2478/cmam-2001-0026.
Full text