Journal articles on the topic 'High-Order Shear Deformation Theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High-Order Shear Deformation Theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xie, Yan, Bin Deng, Jing Jing Chen, and Dao Kui Li. "High-Order Model of Thermo-Piezoelectric Composited Plate." Advanced Materials Research 721 (July 2013): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amr.721.291.
Full textBENFRID, Abdelmoutalib, and Mohamed Bachir Bouiadjra. "Mathematical Approach for Verifying Buckling in Steel Plates." International Science and Technology Journal 35, no. 1 (2024): 1–12. http://dx.doi.org/10.62341/licase2078.
Full textNguyen, Lieu B., Thi Bui Viet, and Hong-Yen Nguyen. "An isogeometric formulation with a three-variable high order shear deformation theory for free vibration analysis of FG porous plates reinforced by graphene platelets." Journal of Science and Technology in Civil Engineering (STCE) - NUCE 15, no. 2 (2021): 51–66. http://dx.doi.org/10.31814/stce.nuce2021-15(2)-05.
Full textLan, Xiang Jun, and Zhi Hua Feng. "Analysis of Deflections and Stresses for Laminated Composite Plates Based on a New Higher-Order Shear Deformation Theory." Applied Mechanics and Materials 226-228 (November 2012): 1725–29. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.1725.
Full textGuillén-Rujano, R., A. Hernández-Pérez, and F. Avilés. "Examination of the plate twist specimen for thick specially orthotropic laminated composites and sandwich plates by using first-order shear deformation theory." Journal of Sandwich Structures & Materials 21, no. 7 (2017): 2239–65. http://dx.doi.org/10.1177/1099636217748349.
Full textShimpi, Rameshchandra P. "Zeroth-Order Shear Deformation Theory for Plates." AIAA Journal 37, no. 4 (1999): 524–26. http://dx.doi.org/10.2514/2.750.
Full textShimpi, Rameshchandra P. "Zeroth-order shear deformation theory for plates." AIAA Journal 37 (January 1999): 524–26. http://dx.doi.org/10.2514/3.14205.
Full textRay, M. C. "Zeroth-Order Shear Deformation Theory for Laminated Composite Plates." Journal of Applied Mechanics 70, no. 3 (2003): 374–80. http://dx.doi.org/10.1115/1.1558077.
Full textKhoa, Ngo Nhu, and Tran Ich Thinh. "Finite element analysis of laminated composite plates using high order shear deformation theory." Vietnam Journal of Mechanics 29, no. 1 (2007): 47–57. http://dx.doi.org/10.15625/0866-7136/29/1/5590.
Full textMerdaci, S., S. Boutaleb, H. Hellal, and S. Benyoucef. "Analysis of Static Bending of Plates FGM Using Refined High Order Shear Deformation Theory." Journal of Building Materials and Structures 6, no. 1 (2019): 32–38. http://dx.doi.org/10.34118/jbms.v6i1.66.
Full textMerdaci, S., S. Boutaleb, H. Hellal, and S. Benyoucef. "Analysis of Static Bending of Plates FGM Using Refined High Order Shear Deformation Theory." Journal of Building Materials and Structures 6, no. 1 (2019): 32–38. https://doi.org/10.5281/zenodo.2609306.
Full textSlimane, Merdaci. "Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory." Advanced Engineering Forum 30 (November 2018): 54–70. http://dx.doi.org/10.4028/www.scientific.net/aef.30.54.
Full textA., Maji1, and Mahato2 P.K. "FREE VIBRATION ANALYSIS OF ORTHOTROPIC LAMINATED COMPOSITE PLATES USING FIRST ORDER SHEAR DEFORMATION THEORY." International Journal of Advances in Engineering & Scientific Research 4, no. 2 (2017): 71–83. https://doi.org/10.5281/zenodo.10775006.
Full textLi, Xinkang, Jifa Zhang, and Yao Zheng. "NURBS-Based Isogeometric Analysis of Beams and Plates Using High Order Shear Deformation Theory." Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/159027.
Full textA., Maji, and Mahato P.K. "FREE VIBRATION ANALYSIS OF ORTHOTROPIC LAMINATED COMPOSITE PLATES USING FIRST ORDER SHEAR DEFORMATION THEORY." International Journal of Advances in Engineering & Scientific Research Vol.4, Issue 2, Feb-Apr-2017 (2017): pp 71–83. https://doi.org/10.5281/zenodo.580443.
Full textShimpi, R. P., H. G. Patel, and H. Arya. "New First-Order Shear Deformation Plate Theories." Journal of Applied Mechanics 74, no. 3 (2006): 523–33. http://dx.doi.org/10.1115/1.2423036.
Full textOtmane, Zerrouki, Merdaci Slimane, and Hadj Mostefa Adda. "Thermo-Mechanical Bending for Hybrid Material Plates Perfect-Imperfect Rectangular Using High Order Theory." Applied Mechanics and Materials 909 (September 28, 2022): 29–44. http://dx.doi.org/10.4028/p-ri86k0.
Full textZENKOUR, A. M., M. N. M. ALLAM, and MOHAMMED SOBHY. "EFFECT OF TRANSVERSE NORMAL AND SHEAR DEFORMATION ON A FIBER-REINFORCED VISCOELASTIC BEAM RESTING ON TWO-PARAMETER ELASTIC FOUNDATIONS." International Journal of Applied Mechanics 02, no. 01 (2010): 87–115. http://dx.doi.org/10.1142/s1758825110000482.
Full textAhmed, Frih, Idder Abdelghani, Moulay Ali Abderrahmane, et al. "Bending behaviour of new sandwich structures for future constructions based on the equivalent single-layer trigonometric shear deformation theory." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 3 (2024): e12892. https://doi.org/10.54021/seesv5n3-104.
Full textFrishter, Lyudmila, and Al-Gburi Noora Saad Subhi. "Uniform Domain Equilibrium Equation with Finite Deformations." E3S Web of Conferences 410 (2023): 03007. http://dx.doi.org/10.1051/e3sconf/202341003007.
Full textEslami, M. R., and M. Shariyat. "A High-Order Theory for Dynamic Buckling and Postbuckling Analysis of Laminated Cylindrical Shells." Journal of Pressure Vessel Technology 121, no. 1 (1999): 94–102. http://dx.doi.org/10.1115/1.2883673.
Full textBedia, Wafa Adda, Mohammed Sid Ahmed Houari, Aicha Bessaim, et al. "A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams." Journal of Nano Research 57 (April 2019): 175–91. http://dx.doi.org/10.4028/www.scientific.net/jnanor.57.175.
Full textCederbaum, Gabriel, Liviu Librescu, and Isaac Elishakoff. "Random vibration of laminated plates modeled within a high‐order shear deformation theory." Journal of the Acoustical Society of America 84, no. 2 (1988): 660–66. http://dx.doi.org/10.1121/1.396845.
Full textLiu, Ping, Kaida Zhang, and Yongwei Zhang. "Bending solution of high-order refined shear deformation theory for rectangular composite plates." International Journal of Solids and Structures 31, no. 18 (1994): 2491–507. http://dx.doi.org/10.1016/0020-7683(94)90033-7.
Full textKołakowski, Zbigniew, and Jacek Jankowski. "Effect of Membrane Components of Transverse Forces on Magnitudes of Total Transverse Forces in the Nonlinear Stability of Plate Structures." Materials 13, no. 22 (2020): 5262. http://dx.doi.org/10.3390/ma13225262.
Full textReddy, J. N. "A Small Strain and Moderate Rotation Theory of Elastic Anisotropic Plates." Journal of Applied Mechanics 54, no. 3 (1987): 623–26. http://dx.doi.org/10.1115/1.3173079.
Full textD.H., Tupe, Dahake A.G., and Gandhe G.R. "Static Examination of Simply Supported Laminated Composite Beam with Varying Load Using Trigonometric Shear Deformation Theory." Indian Journal of Science and Technology 13, no. 10 (2020): 1188–99. https://doi.org/10.17485/ijst/2020/v13i10/149907.
Full textAuricchio, F., and E. Sacco. "Refined First-Order Shear Deformation Theory Models for Composite Laminates." Journal of Applied Mechanics 70, no. 3 (2003): 381–90. http://dx.doi.org/10.1115/1.1572901.
Full textSenjanović, Ivo, Nikola Vladimir, Neven Hadžić, and Marko Tomić. "New first order shear deformation beam theory with in-plane shear influence." Engineering Structures 110 (March 2016): 169–83. http://dx.doi.org/10.1016/j.engstruct.2015.11.032.
Full textMahajan, Aishwarya, Sagar Gaikwad, and Ajay Dahake. "Displacement in Deep Propped Cantilever Beam Subjected to Semi-elliptical Load." Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, no. 1 (2022): 485–89. http://dx.doi.org/10.38208/acp.v1.538.
Full textKhaled, Zaiter, and Berrabah Hamza Madjid. "Study and comparison of the bending response of porous advanced composite plates under thermomechanical loads using different materials." Brazilian Journal of Technology 8, no. 1 (2025): e76492. https://doi.org/10.38152/bjtv8n1-005.
Full textRogacheva, Nelly. "THE REFINED THEORY OF ELASTIC PLATES AS ASYMPTOTIC APPROACH OF 3D PROBLEM." MATEC Web of Conferences 196 (2018): 02037. http://dx.doi.org/10.1051/matecconf/201819602037.
Full textChun, C. K., and S. B. Dong. "Shear Constitutive Relations for Laminated Anisotropic Shells and Plates: Part II—Vibrations of Composite Cylinders." Journal of Applied Mechanics 59, no. 2 (1992): 380–89. http://dx.doi.org/10.1115/1.2899531.
Full textDaouadji, Tahar Hassaine, Abdelouahed Tounsi, and El Abbes Adda Bedia. "A New Higher Order Shear Deformation Model for Static Behavior of Functionally Graded Plates." Advances in Applied Mathematics and Mechanics 5, no. 03 (2013): 351–64. http://dx.doi.org/10.4208/aamm.11-m11176.
Full textShimpi, Rameshchandra P., Rajesh A. Shetty, and Anirban Guha. "A simple single variable shear deformation theory for a rectangular beam." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 24 (2016): 4576–91. http://dx.doi.org/10.1177/0954406216670682.
Full textKim, Jun-Sik, and Maenghyo Cho. "Enhanced First-Order Shear Deformation Theory for Laminated and Sandwich Plates." Journal of Applied Mechanics 72, no. 6 (2005): 809–17. http://dx.doi.org/10.1115/1.2041657.
Full textGhazoul, Tahir, Mohamed Atif Benatta, and Mohamed Bachir Bouiadjra. "Static and dynamic behaviors of laminated composite plates resting on elastic foundation." Journal of Building Materials and Structures 9, no. 1 (2022): 12–21. http://dx.doi.org/10.34118/jbms.v9i1.1882.
Full textCHALLAMEL, NOËL, GJERMUND KOLVIK, and JOSTEIN HELLESLAND. "PLATE BUCKLING ANALYSIS USING A GENERAL HIGHER-ORDER SHEAR DEFORMATION THEORY." International Journal of Structural Stability and Dynamics 13, no. 05 (2013): 1350028. http://dx.doi.org/10.1142/s0219455413500284.
Full textBakhsheshy, Ali, and Hossein Mahbadi. "The effect of multidimensional temperature distribution on the vibrational characteristics of a size-dependent thick bi-directional functionally graded microplate." Noise & Vibration Worldwide 50, no. 9-11 (2019): 267–90. http://dx.doi.org/10.1177/0957456519883265.
Full textSUBHA, K., SHASHIDHARAN, S. SAVITHRI, and V. SYAM PRAKASH. "ASSESSMENT OF COMPUTATIONAL MODELS FOR LAMINATED COMPOSITE PLATES." International Journal of Computational Methods 04, no. 04 (2007): 633–44. http://dx.doi.org/10.1142/s0219876207001333.
Full textNami, Mohammad Rahim, and Maziar Janghorban. "Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory." Beilstein Journal of Nanotechnology 4 (December 30, 2013): 968–73. http://dx.doi.org/10.3762/bjnano.4.109.
Full textJaved, Saira. "Frequency Response of Higher-Order Shear-Deformable Multilayered Angle-Ply Cylindrical Shells." Axioms 14, no. 3 (2025): 172. https://doi.org/10.3390/axioms14030172.
Full textKolakowski, Zbigniew, and Jacek Jankowski. "Some Inconsistencies in the Nonlinear Buckling Plate Theories—FSDT, S-FSDT, HSDT." Materials 14, no. 9 (2021): 2154. http://dx.doi.org/10.3390/ma14092154.
Full textSheinman, I., and M. Adan. "The Effect of Shear Deformation on Post-Buckling Behavior of Laminated Beams." Journal of Applied Mechanics 54, no. 3 (1987): 558–62. http://dx.doi.org/10.1115/1.3173069.
Full textLim, Seongsik, Vivek Kumar Dhimole, Yongbae Kim, and Chongdu Cho. "Investigations for Design Estimation of an Anisotropic Polymer Matrix Composite Plate with a Central Circular Hole under Uniaxial Tension." Polymers 14, no. 10 (2022): 1977. http://dx.doi.org/10.3390/polym14101977.
Full textSadeghian, Mostafa, Asif Jamil, Arvydas Palevicius, Giedrius Janusas, and Vytenis Naginevicius. "The Nonlinear Bending of Sector Nanoplate via Higher-Order Shear Deformation Theory and Nonlocal Strain Gradient Theory." Mathematics 12, no. 8 (2024): 1134. http://dx.doi.org/10.3390/math12081134.
Full textKulkarni, Sudhakar A., and Kamal M. Bajoria. "Large deformation analysis of piezolaminated smart structures using higher-order shear deformation theory." Smart Materials and Structures 16, no. 5 (2007): 1506–16. http://dx.doi.org/10.1088/0964-1726/16/5/002.
Full textSayyad, A. S., and Y. M. Ghugal. "Effect of Stress Concentration on Laminated Plates." Journal of Mechanics 29, no. 2 (2012): 241–52. http://dx.doi.org/10.1017/jmech.2012.131.
Full textSuresh, J. K., and V. T. Nagaraj. "Higher-order shear deformation theory for thin-walled composite beams." Journal of Aircraft 33, no. 5 (1996): 978–86. http://dx.doi.org/10.2514/3.47044.
Full textKardomateas, George A., Nunthadech Rodcheuy, and Yeoshua Frostig. "First-Order Shear Deformation Theory Variants for Curved Sandwich Panels." AIAA Journal 56, no. 2 (2018): 808–17. http://dx.doi.org/10.2514/1.j056306.
Full text