Journal articles on the topic 'High permittivity ceramics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High permittivity ceramics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tang, Qingyang, Zhicheng Shi, Shuimiao Xia, et al. "Enhanced dielectric properties of Sr2+ and Zr4+ doped BaTiO3 colossal permittivity metamaterials." EPJ Applied Metamaterials 11 (2024): 13. http://dx.doi.org/10.1051/epjam/2024012.
Full textWang, Wei, Tingting Fan, Songxiang Hu, et al. "Defect Control of Donor Doping on Dielectric Ceramics to Improve the Colossal Permittivity and Temperature Stability." Coatings 14, no. 8 (2024): 1024. http://dx.doi.org/10.3390/coatings14081024.
Full textXiong, Zhao Xian, M. Y. Zhou, Hao Xue, Hong Qiu, and F. Xiao. "Characterization of Microwave Ceramics with Low Permittivity and High Quality Factors." Key Engineering Materials 434-435 (March 2010): 244–46. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.244.
Full textLi, Wei, Zhonghua Yao, Hua Hao, Minghe Cao, and Hanxing Liu. "High-Permittivity and Bias-Voltage-Insensitive (Ba,Sr,Ca)TiO3·0.03(Bi2O3·3TiO2) Ceramics with Y5U Specification." Crystals 13, no. 12 (2023): 1627. http://dx.doi.org/10.3390/cryst13121627.
Full textSzwagierczak, Dorota, Beata Synkiewicz-Musialska, Jan Kulawik, and Norbert Pałka. "Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications." Materials 14, no. 14 (2021): 4017. http://dx.doi.org/10.3390/ma14144017.
Full textHennings, D. F. K., B. Schreinemacher, and H. Schreinemacher. "High-permittivity dielectric ceramics with high endurance." Journal of the European Ceramic Society 13, no. 1 (1994): 81–88. http://dx.doi.org/10.1016/0955-2219(94)90062-0.
Full textStanculescu, Roxana, Cristina E. Ciomaga, Leontin Padurariu, et al. "Study of the role of porosity on the functional properties of (Ba,Sr)TiO3 ceramics." Journal of Alloys and Compounds 673 (September 15, 2015): 79–87. https://doi.org/10.1016/j.jallcom.2015.03.252.
Full textLu, Huafei, Yuanhua Lin, Jiancong Yuan, Cewen Nan, and Kexin Chen. "Dielectric and varistor properties of rare-earth-doped ZnO and CaCu3Ti4O12 composite ceramics." Journal of Advanced Dielectrics 03, no. 01 (2013): 1350001. http://dx.doi.org/10.1142/s2010135x1350001x.
Full textKOLAR, D., and D. SUVOROV. "ChemInform Abstract: High Permittivity Microwave Ceramics." ChemInform 27, no. 10 (2010): no. http://dx.doi.org/10.1002/chin.199610337.
Full textQin, Qun, Tian Guo Wang, and Wen Jun Zhang. "Effect of Er2O3 on the Microstructure and Electrical Properties of WO3 Capacitor-Varistor Ceramics." Advanced Materials Research 233-235 (May 2011): 2503–6. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.2503.
Full textPuli, Venkata Sreenivas, Shiva Adireddy, Manish Kothakonda, Ravinder Elupula, and Douglas B. Chrisey. "Low temperature sintered giant dielectric permittivity CaCu3Ti4O12 sol-gel synthesized nanoparticle capacitors." Journal of Advanced Dielectrics 07, no. 03 (2017): 1750017. http://dx.doi.org/10.1142/s2010135x17500175.
Full textXiong, Zhao Xian, X. Xue, Hong Qiu, et al. "Microwave Dielectric Ceramics and Devices for Wireless Technologies." Key Engineering Materials 368-372 (February 2008): 154–58. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.154.
Full textTsurumi, T., Y. Yamamoto, H. Kakemoto, S. Wada, H. Chazono, and H. Kishi. "Dielectric properties of BaTiO3–BaZrO3 ceramics under a high electric field." Journal of Materials Research 17, no. 4 (2002): 755–59. http://dx.doi.org/10.1557/jmr.2002.0110.
Full textWang, Xu Ai, Run Hua Fan, Zhi Cheng Shi, et al. "Tunable Electromagnetic Properties of Yttrium Iron Garnet Ceramics." Materials Science Forum 816 (April 2015): 113–17. http://dx.doi.org/10.4028/www.scientific.net/msf.816.113.
Full textChen, K., S. K. Yuan, P. L. Li, et al. "High permittivity in Zr doped NiO ceramics." Journal of Applied Physics 102, no. 3 (2007): 034103. http://dx.doi.org/10.1063/1.2764217.
Full textShi, Yongjie, Wentao Hao, Hui Wu, et al. "High dielectric-permittivity properties of NaCu3Ti3Sb0.5Nb0.5O12 ceramics." Ceramics International 42, no. 1 (2016): 116–21. http://dx.doi.org/10.1016/j.ceramint.2015.08.009.
Full textPeng, Zhen, Hong Wang, and Xi Yao. "Dielectric resonator antennas using high permittivity ceramics." Ceramics International 30, no. 7 (2004): 1211–14. http://dx.doi.org/10.1016/j.ceramint.2003.12.079.
Full textAhmad, Mohamad M., Adil Alshoaibi, Sajid Ali Ansari, Tarek S. Kayed, Hassan A. Khater, and Hicham Mahfoz Kotb. "Dielectric Properties of Bi2/3Cu3Ti4O12 Ceramics Prepared by Mechanical Ball Milling and Low Temperature Conventional Sintering." Materials 15, no. 9 (2022): 3173. http://dx.doi.org/10.3390/ma15093173.
Full textChen, Xiuli, Xiaoxia Li, Guisheng Huang, Gaofeng Liu, Xiao Yan, and Huanfu Zhou. "Giant permittivity and good thermal stability of LiCuNb3O9-Bi(Mg0.5Zr0.5)O3 solid solutions." Journal of Advanced Dielectrics 08, no. 02 (2018): 1850012. http://dx.doi.org/10.1142/s2010135x18500121.
Full textGorokhovsky, Alexander, Alexey Tsyganov, Vladimir Goffman, et al. "Synthesis and electrical properties of the ceramic materials based on KxMnyRzTi8–y–zO16 (R = Al, Cr, Fe) hollandite-like solid solutions." Journal of Advanced Materials and Technologies 9, no. 3 (2024): 160–66. https://doi.org/10.17277/jamt.2024.03.pp.160-166.
Full textIsmail, Mukhlis M. "Ferroelectric characteristics of Fe/Nb co-doped BaTiO3." Modern Physics Letters B 33, no. 22 (2019): 1950261. http://dx.doi.org/10.1142/s0217984919502610.
Full textKhongrattana, Prachit, Marina Mani, Suwit Khongpakdee, Jakkree Boonlakhorn, and Pornjuk Srepusharawoot. "The influence of extrinsic structural factors on the dielectric properties of CaCu3Ti3.90Cr0.10O12 ceramics." Journal of Physics: Conference Series 2653, no. 1 (2023): 012049. http://dx.doi.org/10.1088/1742-6596/2653/1/012049.
Full textZhang, Lulu, Bin Cui, Rong Ma, et al. "High permittivity of Ba(Ti1-xZrx)O3-based Y5V-type nanopowders and ceramics synthesized using a one-step sol–gel method." Journal of Advanced Dielectrics 03, no. 04 (2013): 1350018. http://dx.doi.org/10.1142/s2010135x13500185.
Full textFan, Yongbo, Xinzhen Wang, Hongtian Li, et al. "Pb, Bi, and rare earth free X6R barium titanate–sodium niobate ceramics for high voltage capacitor applications." Applied Physics Letters 122, no. 14 (2023): 143901. http://dx.doi.org/10.1063/5.0142200.
Full textSynkiewicz-Musialska, Beata. "LTCC glass-ceramics based on diopside/cordierite/Al2O3 for ultra-high frequency applications." Scientiae Radices 2, no. 2 (2023): 190–201. http://dx.doi.org/10.58332/scirad2023v2i2a04.
Full textSzwagierczak, Dorota. "Dielectric properties of high-permittivity A2/3CuTa4O12 ceramics." Microelectronics International 31, no. 3 (2014): 137–42. http://dx.doi.org/10.1108/mi-10-2013-0056.
Full textLin, Yuanhua, Rongjuan Zhao, Jianfei Wang, et al. "Polarization of High-Permittivity Dielectric NiO-Based Ceramics." Journal of the American Ceramic Society 88, no. 7 (2005): 1808–11. http://dx.doi.org/10.1111/j.1551-2916.2005.00361.x.
Full textPetzelt, Jan. "Dielectric Grain-Size Effect in High-Permittivity Ceramics." Ferroelectrics 400, no. 1 (2010): 117–34. http://dx.doi.org/10.1080/00150193.2010.505511.
Full textLin, Yuanhua, Jianfei Wang, Lei Jiang, Yu Chen, and Ce-Wen Nan. "High permittivity Li and Al doped NiO ceramics." Applied Physics Letters 85, no. 23 (2004): 5664–66. http://dx.doi.org/10.1063/1.1827937.
Full textHuang, Cheng-Liang, Shin-Tung Tasi, and Yuan-Bin Chen. "Band-pass filters using high-permittivity ceramics substrate." Microwave and Optical Technology Letters 52, no. 10 (2010): 2344–47. http://dx.doi.org/10.1002/mop.25439.
Full textLi, Xuhai, Liang Xu, Lixin Liu, et al. "High pressure treated ZnO ceramics towards giant dielectric constants." J. Mater. Chem. A 2, no. 39 (2014): 16740–45. http://dx.doi.org/10.1039/c4ta03434a.
Full textHoshina, Takuya, Mikio Yamazaki, Hiroaki Takeda, and Takaaki Tsurumi. "Dielectric Breakdown Mechanism of Perovskite-Structured Ceramics." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, CICMT (2015): 000116–20. http://dx.doi.org/10.4071/cicmt-tp43.
Full textCheng, Xiao Fang, Xin Gui Tang, Shao Gong Ju, Yan Ping Jiang, and Qiu Xiang Liu. "Dielectric Properties and Diffuse Phase Transition of Sol-Gel Derived 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 Ceramics." Advanced Materials Research 311-313 (August 2011): 1481–84. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.1481.
Full textKigoshi, Yoichi, Saki Hatta, Takashi Teranishi, et al. "Dielectric Properties of Barium Titanate Ceramics with Nano-Sized Domain." Key Engineering Materials 445 (July 2010): 27–30. http://dx.doi.org/10.4028/www.scientific.net/kem.445.27.
Full textThomas, P., and K. B. R. Varma. "Effect of TeO2 addition on the dielectric properties of CaCu3Ti4O12 ceramics derived from the oxalate precursor route." Journal of Advanced Dielectrics 03, no. 04 (2013): 1350028. http://dx.doi.org/10.1142/s2010135x13500288.
Full textBochenek, Dariusz, Dagmara Brzezińska, Przemysław Niemiec, and Lucjan Kozielski. "The Influence of Lanthanum Admixture on Microstructure and Electrophysical Properties of Lead-Free Barium Iron Niobate Ceramics." Materials 17, no. 15 (2024): 3666. http://dx.doi.org/10.3390/ma17153666.
Full textGreicius, Simonas, Juras Banys, and Izabela Szafraniak-Wiza. "Dielectric investigations of BiFeO3 ceramics." Processing and Application of Ceramics 3, no. 1-2 (2009): 85–87. http://dx.doi.org/10.2298/pac0902085g.
Full textDumnui, Pariwat, Atittaya Changchuea, Marina Mani, Jakkree Boonlakhorn, and Pornjuk Srepusharawoot. "Structural and Electrical Characteristics of CaCu3-xFexTi4O12 Ceramics." ASEAN Journal of Scientific and Technological Reports 28, no. 2 (2025): e256400. https://doi.org/10.55164/ajstr.v28i2.256400.
Full textAlbutt, Naphat, Suejit Pechprasarn, Pattaraporn Damkoengsuntorn, and Thanapong Sareein. "The Giant Dielectric Constant of Y2NiMnO6 Ceramics for DC Bias." Applied Mechanics and Materials 866 (June 2017): 277–81. http://dx.doi.org/10.4028/www.scientific.net/amm.866.277.
Full textLi, Yue Ming, Zong Yang Shen, Zhu Mei Wang, Hua Zhang, Yan Hong, and Run Hua Liao. "Structure and Microwave Dielectric Properties of (Ca0.9375Sr0.0625)0.25 (Li0.5Sm0.5)0.75TiO3 Ceramics with B2O3-CuO Sintering Aids." Advanced Materials Research 284-286 (July 2011): 1442–46. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1442.
Full textBochenek, Dariusz, Przemysław Niemiec, Radosław Zachariasz, and Ryszard Skulski. "Ferroelectric Properties and Internal Friction in Doped PZT Ceramics." Key Engineering Materials 644 (May 2015): 171–74. http://dx.doi.org/10.4028/www.scientific.net/kem.644.171.
Full textPeng, Zhanhui, Jitong Wang, Fudong Zhang, et al. "High energy storage and colossal permittivity CdCu3Ti4O12 oxide ceramics." Ceramics International 48, no. 3 (2022): 4255–60. http://dx.doi.org/10.1016/j.ceramint.2021.10.217.
Full textPetzelt, J., and I. Rychetský. "Effective Dielectric Function in High-Permittivity Ceramics and Films." Ferroelectrics 316, no. 1 (2005): 89–95. http://dx.doi.org/10.1080/00150190590963183.
Full textBhaskar Reddy, S., M. S. Ramachandra Rao, and K. Prasad Rao. "Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics." Applied Physics Letters 91, no. 2 (2007): 022917. http://dx.doi.org/10.1063/1.2755932.
Full textHuang, Cheng-Liang, Pau-Yeou Yen, and Min-Hung Weng. "Planar SIR microwave bandpass filter using high-permittivity ceramics." Microwave and Optical Technology Letters 26, no. 6 (2000): 410–13. http://dx.doi.org/10.1002/1098-2760(20000920)26:6<410::aid-mop19>3.0.co;2-y.
Full textDong, Ying, Hiroshi Kubo, Mitsuo Hano, and Ikuo Awai. "A waveguide bandpass filter made of high-permittivity ceramics." Electronics and Communications in Japan (Part II: Electronics) 77, no. 1 (1994): 46–56. http://dx.doi.org/10.1002/ecjb.4420770105.
Full textZHOU, DI, HONG WANG, QIU-PING WANG, et al. "MICROWAVE DIELECTRIC PROPERTIES AND RAMAN SPECTROSCOPY OF SCHEELITE SOLID SOLUTION [(Li0.5Bi0.5)1-xCax]MoO4 CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES." Functional Materials Letters 03, no. 04 (2010): 253–57. http://dx.doi.org/10.1142/s1793604710001354.
Full textKarpov, A. V., A. E. Sytschev, O. D. Boyarchenko, I. D. Kovalev, O. V. Belousova, and V. E. Loryan. "DIELECTRIC PROPERTIES OF CERAMICS BASED ON BN–ZrB2 AND BN–ZrO2 PRODUCED BY SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS." Steklo i Keramika, no. 11 (November 2022): 30–36. http://dx.doi.org/10.14489/glc.2022.11.pp.030-036.
Full textWang, Bo, Le Zhao, Xiuhuai Jia, Pan Yang, and Shihui Yu. "Enhanced Tunability Achieving at Low Permittivity and Electric Field in (Ba0.91Ca0.09)(SnxZr0.2−xTi0.8)O3-2 mol% CuO-1 mol% Li2CO3 Ceramics." Materials 16, no. 15 (2023): 5226. http://dx.doi.org/10.3390/ma16155226.
Full textJIANG, Y. P., X. G. TANG, Y. C. ZHOU, and Q. X. LIU. "Pb-DOPING EFFECTS ON THE DIELECTRIC AND PYROELECTRIC PROPERTIES OF (Sr,Pb)TiO3 SYSTEM." Journal of Advanced Dielectrics 02, no. 01 (2012): 1250005. http://dx.doi.org/10.1142/s2010135x12500051.
Full text