Academic literature on the topic 'High pressure die casting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High pressure die casting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High pressure die casting"
Jelínek, P., and E. Adámková. "Lost Cores for High-Pressure Die Casting." Archives of Foundry Engineering 14, no. 2 (June 1, 2014): 101–4. http://dx.doi.org/10.2478/afe-2014-0045.
Full textSemanco, Pavol, Marcel Fedák, Miroslav Rimár, Peter Skok, and Emil Ragan. "Equation Model of the Cooling Process in High Pressure Die-Casting Technology." Advanced Materials Research 505 (April 2012): 165–69. http://dx.doi.org/10.4028/www.scientific.net/amr.505.165.
Full textPałyga, Ł., M. Stachowicz, and K. Granat. "Effect of parameters of high-pressure die casting on occurrence of casting nonconformities in sleeves of silumin alloy EN AB 47100." Archives of Metallurgy and Materials 62, no. 1 (March 1, 2017): 373–78. http://dx.doi.org/10.1515/amm-2017-0058.
Full textMolnár, Dániel, Ádám Kiss, and Csaba Majoros. "Casting Issues of Thick-Walled High Pressure Die Castings." International Journal of Engineering and Management Sciences 5, no. 2 (April 15, 2020): 159–66. http://dx.doi.org/10.21791/ijems.2020.2.20.
Full textŁągiewka, M., Z. Konopka, M. Nadolski, and A. Zyska. "The Effect of Vacuum Assistance on the Quality of Castings Produced by High Pressure Die Casting Method." Archives of Foundry Engineering 14, no. 2 (June 1, 2014): 23–26. http://dx.doi.org/10.2478/afe-2014-0030.
Full textGaspar, S., and J. Pasko. "Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast." Archives of Foundry Engineering 16, no. 2 (June 1, 2016): 45–50. http://dx.doi.org/10.1515/afe-2016-0024.
Full textGunasegaram, Dayalan R., Michel Givord, and Robert G. O'Donnell. "ATM: A Greener Variant of High Pressure Die Casting." Materials Science Forum 618-619 (April 2009): 27–31. http://dx.doi.org/10.4028/www.scientific.net/msf.618-619.27.
Full textSkorulski, G. "3DP Technology for the Manufacture of Molds for Pressure Casting." Archives of Foundry Engineering 16, no. 3 (September 1, 2016): 99–102. http://dx.doi.org/10.1515/afe-2016-0058.
Full textLiu, Yixiong, Haiping He, Jixiang Gao, Gang Li, Yi Liang, and Liejun Li. "Research on the low-pressure casting process of a double suction impeller in 304 austenitic stainless steel with high performance and thin-wall complex structure." Journal of Physics: Conference Series 2390, no. 1 (December 1, 2022): 012078. http://dx.doi.org/10.1088/1742-6596/2390/1/012078.
Full textLiu, Yan Gai, Zhao Hui Huang, Hao Ding, Ming Hao Fang, and Shou Mei Xiong. "Study on Pressure Variations in the Mold of Magnesium Alloy Die Castings." Key Engineering Materials 353-358 (September 2007): 1614–16. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1614.
Full textDissertations / Theses on the topic "High pressure die casting"
Long, A. D. "Extending life of High Pressure Die Casting Dies." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527834.
Full textSivertsen, Halses Sebastian. "Die life prediction using High Pressure Die Casting simulations." Thesis, Tekniska Högskolan, Jönköping University, JTH, Material och tillverkning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-50031.
Full textSadeghi, Mohammad. "Optimization product parts in high pressure die casting process." Licentiate thesis, Mälardalens högskola, Framtidens energi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-27733.
Full textElfakharany, Essameldin F. "Qualitative Reasoning for filling pattern in high-pressure die-casting and gravity-driven casting /." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488192447430967.
Full textSpataro, Mark Paul. "Comparison of mechanical performance between magnesium alloy sand castings and high pressure die castings /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18378.pdf.
Full textFiorese, Elena. "Process parameters affecting quality of high-pressure die cast aluminium alloys." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3426773.
Full textLa pressocolata è un processo ampiamente utilizzato per produrre componenti con elevata produttività e geometria complessa. Comunque, la pressocolata è ancora considerata un “processo generatore di difetti”, dal momento che una percentuale del 5-10% di scarto è rilevata di solito nei getti. Per questa ragione, la disponibilità di nuovi standard e strumenti per l’ottimizzazione di processo è uno dei bisogni più importanti del settore della fonderia. Entrambe queste criticità sono affrontate in questa Tesi. Per prima cosa, è stata sviluppata e successivamente pubblicata come Report Tecnici riconosciuti dal CEN una nuova classificazione dei difetti e degli stampi di riferimento per stimare le proprietà meccaniche statiche delle leghe di alluminio, rispondendo al bisogno di nuovi standard. Poi, è stata sviluppata una metodologia nuova e completa per ottimizzare il processo di pressocolata attraverso la definizione di metamodelli significativi. Quindi, sono stati introdotti dei nuovi parametri di processo, che rappresentano i più importanti fenomeni fisici che influenzano la qualità dei getti e la natura integrale del processo di pressocolata, ed è stato delineato un approccio originale. In particolare, allo scopo di fornire una rappresentazione efficace delle diverse fasi del processo, si è dimostrato che i seguenti parametri sono i più influenti ed efficaci nel rappresentare le forze trasmesse, il flusso di energia meccanica e l’asportazione del calore: il valore quadratico medio dell’accelerazione in seconda fase, l’energia associata alle forze di flusso nell’intero ciclo, il lavoro delle forze di pressione nella terza fase e il gradiente termico normalizzato. I primi due parametri descrivono l’effetto del profilo di moto del pistone; il secondo è invece legato anche alla pressione esercitata dal pistone stesso, mentre l’ultimo rappresenta esclusivamente fenomeni di natura termica. Lo sviluppo ed il calcolo di questi parametri sfrutta le tecniche di elaborazione numerica dei segnali, al fine di estrarre le informazioni dai profili misurati di posizione e di pressione del pistone. La validazione del metodo proposto è stata condotta attraverso quattro diverse campagne sperimentali, con un totale di 210 getti analizzati, nelle quali sono state utilizzate diverse macchine di iniezione, diversi stampi e diverse leghe, al fine di ottenere risultati generali ed estendibili. La correttezza del metodo proposto è confermata dalla correlazione statistica dei parametri proposti con la resistenza meccanica statica, con la densità, la porosità, e da alcune significative analisi metallografiche (percentuale di ossidi sulle superfici di frattura, analisi dei difetti interni). Data l’efficacia dimostrata dei parametri proposti, ed in particolare di quelli legati al profilo di moto del pistone, l’approccio è stato esteso tramite lo sviluppo di alcune relazioni analitiche per calcolare i due parametri cinematici. Ciò rappresenta uno strumento efficace per sintetizzare a priori il profilo di moto ottimale del pistone che, nel rispetto dei vincoli di macchina, consenta di ottimizzare la qualità dei getti.
Binney, Matthew N. "Porosity reduction in high pressure die casting through the use of squeeze pins /." [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19810.pdf.
Full textTang, Caixian. "Soldering in magnesium high pressure die casting and its preservation by surface engineering." Swinburne Research Bank, 2007. http://hdl.handle.net/1959.3/22747.
Full text[A thesis submitted] for the degree of Doctor of Philosophy, Industrial Research Institute, Swinburne University of Technology - 2007. Typescript. Includes bibliographical references (p. 154-167).
Laukli, Hans Ivar. "High Pressure Die Casting of Aluminium and Magnesium Alloys : Grain Structure and Segregation Characteristics." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-379.
Full textCold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings.
The investigations were carried out mainly using the AM60 magnesium alloy and the A356 aluminium alloy. Two different casting arrangements were used: the cold chamber HPDC and the gravity die casting methods, which allowed for different flow and solidification conditions. The microstructures in the castings were investigated using optical microscopy, image analysis, scanning electron microscopy, electron back scatter diffraction measurements and electron probe microanalysis.
In the HPDC experiments, the shot sleeve solidification conditions were investigated primarily by changing the melt superheat on pouring. This significantly affected the microstructures in the castings. The fraction of externally solidified crystals (ESCs) was consistently found to be largest near the gate in both the AM60 and the A356 die castings. This was attributed to the inherent shot sleeve solidification conditions and the flow set up by the plunger movement. When the superheat was increased, a lower fraction of ESCs was found in the castings. Furthermore, a high superheat gave ESCs with branched dendritic/elongated trunk morphology whilst a low superheat generated coarser and more globular ESCs, both in the AM60 and the A356 castings. The ESCs typically segregated towards the central region of the cross sections at further distances from the gate in the die castings.
When a thin layer of thermal insulating coating was applied on the shot sleeve wall in the production of AM60 die castings, it nearly removed all ESCs in the castings. Using an A356 alloy, (and no shot sleeve coating), with no Ti in solution gave a significantly lower fraction of ESCs, whereas AlTi5B1 grain refiner additions induced an increase in the fraction of ESCs and a significantly finer grain size in the castings. The formation of globular ESCs was enhanced when AlTi5B1 grain refiner was added to the A356 alloy.
In controlled laboratory gravity die casting experiments, typical HPDC microstructures were created by pouring semi-solid metal into a steel die: The ESCs were found to segregate/migrate to the central region during flow, until a maximum packing, (fraction of ESCs of ~35-40%), was reached. The extent of segregation is determined by the fraction of ESCs, and the die temperature affects the position of the ESCs. The segregation of ESCs was explained to occur during flow as a result of lift forces.
The formation of banded defects has also been studied: the position of the bands was affected by the die temperature and the fraction of ESCs. Based on the nature of the bands and their occurrence, a new theory on the formation of defect bands was proposed: During flow the solid distribution from the die wall consists of three regions: 1) a solid fraction gradient at the wall; 2) a low solid fraction region which carries (3) a network of ESCs. A critical fraction solid exists where the deformation rate exceeds the interdendritic flow rate. When the induced stress exceeds the network strength, deformation can occur by slip, followed by liquid flow. The liquid flow is caused by solidification shrinkage, hydrostatic pressure on the interior ESC network, and gaps forming which draw in liquid.
Fraser, Darren T. "Soldering in high pressure die casting and its prevention by lubricant and oxide layers /." [St. Lucia, Qld.], 2000. http://adt.library.uq.edu.au/public/adt-QU20010830.163828/.
Full textBooks on the topic "High pressure die casting"
Gallagher, Michael J. The high pressure die casting industry: A strategic marketing analysis and competitor profile. [Cleveland, Ohio: Leading Edge Reports, 1995.
Find full textBatyshev, A. I. Kristallizat͡s︡ii͡a︡ metallov i splavov pod davleniem. 2nd ed. Moskva: "Metallurgii͡a︡", 1990.
Find full textThe potential for cost and weight reduction in transport applications through the use of heat treated aluminum high pressure diecastings. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textAuthority, Health Education, ed. High blood pressure, hypertension, pressure. London: Health Education Authority, 1998.
Find full textMichiels, Chris, Douglas H. Bartlett, and Abram Aertsen, eds. High-Pressure Microbiology. Washington, DC, USA: ASM Press, 2008. http://dx.doi.org/10.1128/9781555815646.
Full textSteingress, Frederick M. High pressure boilers. 4th ed. Homewood, Ill: American Technical Publishers, 2009.
Find full textSteingress, Frederick M. High pressure boilers. 2nd ed. Homewood, Ill: American Technical Publishers, 1994.
Find full textBook chapters on the topic "High pressure die casting"
Molnár, Dániel, Jenő Dúl, and Richárd Szabó. "Simulation of High Pressure Die Casting Solidification." In Materials Science Forum, 555–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-991-1.555.
Full textLiu, T., L. N. Brewer, Jeffrey R. Bunn, Chris M. Fancher, L. Nastac, V. Arvikar, and I. Levin. "Measurement of Residual Strain in the Cylinder Bridge of High-Pressure Die Cast A383 Engine Blocks Using Neutron Diffraction." In Shape Casting, 303–10. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06034-3_29.
Full textJi, Shouxun, Feng Yan, and Zhongyun Fan. "A High Strength Aluminium Alloy for High Pressure Die Casting." In Light Metals 2016, 207–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48251-4_35.
Full textJi, Shouxun, Feng Yan, and Zhongyun Fan. "A High Strength Aluminium Alloy for High Pressure Die Casting." In Light Metals 2016, 207–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274780.ch35.
Full textChimani, Christian M., Richard Kretz, Simon Schneiderbauer, Stefan Puttinger, and Stefan Pirker. "Studies on Flow Characteristics at High-Pressure Die-Casting." In Light Metals 2012, 443–47. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48179-1_75.
Full textHa, Joseph, and Paul W. Cleary. "3-Dimensional SPH Simulations of High Pressure Die Casting." In Computational Fluid Dynamics 2002, 179–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_24.
Full textChimani, Christian M., Richard Kretz, Simon Schneiderbauer, Stefan Puttinger, and Stefan Pirker. "Studies on Flow Characteristics at High-Pressure Die-Casting." In Light Metals 2012, 441–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118359259.ch75.
Full textGonçalves, Micael, Mark R. Jolly, Konstantinos Salonitis, and Emanuele Pagone. "Resource Efficiency Analysis of High Pressure Die Casting Process." In The Minerals, Metals & Materials Series, 1041–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72284-9_136.
Full textSaeedipour, Mahdi, Simon Schneiderbauer, Stefan Pirker, and Salar Bozorgi. "Prediction of Surface Porosity Defects in High Pressure Die Casting." In Advances in the Science and Engineering of Casting Solidification, 155–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093367.ch19.
Full textSaeedipour, Mahdi, Simon Schneiderbauer, Stefan Pirker, and Salar Bozorgi. "Prediction of Surface Porosity Defects in High Pressure Die Casting." In Advances in the Science and Engineering of Casting Solidification, 155–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48117-3_19.
Full textConference papers on the topic "High pressure die casting"
Ilotte, Vincenzo. "Innovative Alloys for High Pressure Die Casting." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-0552.
Full textSoar, Rupert C., and Philip M. Dickens. "Design of laminated tooling for high-pressure die casting." In Photonics East '96, edited by Pierre Boulanger. SPIE, 1997. http://dx.doi.org/10.1117/12.263350.
Full textTanihata, Akito, Naoko Sato, Koji Katsumata, and Takashi Shiraishi. "Development of High-strength Piston Material with High Pressure Die Casting." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-0986.
Full textAsami, Akihiko, Tomoyuki Imanishi, Yukio Okazaki, Tomohiro Ono, and Kenichi Tetsuka. "Development of Aluminium Hollow Subframe Using High-Pressure Die Casting." In SAE 2016 World Congress and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-0406.
Full textKopper, Adam, Raymond Donahue, David Olson, and Stephen Midson. "Case Studies of Large Components Produced by High-Pressure Die Casting and Slurry-on-Demand Casting." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1691.
Full textChen, Weilong. "A Development of Virtual Manufacturing System for Magnesium High Pressure Die Casting Processes." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55228.
Full textLi, Jizhan, Zhichao Fan, Tao Chen, and Yu Zhou. "Mechanism of High Temperature Stability on Microstructures of 25Cr35NiNb Alloy Prepared by Laser Additive Manufacturing." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-84663.
Full textSieracki, Edmund G., Jesus J. Velazquez, and Khalil Kabiri. "Compressive Stress Retention Characteristics of High Pressure Die Casting Magnesium Alloys." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960421.
Full textConrad, Adrian, Marty Mclaughlin, and Chung-Whee Kim. "Computer Simulation of High Pressure Die Casting of Magnesium Engine Cradle." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1815.
Full textBakhtiyarov, Sayavur I., and Ruel A. Overfelt. "Measurements of Decomposed EPS Gases Pressure and Molten Metal-Polymeric Foam Interface Velocity During Lost Foam Casting Process: Part 1—Disconnect Casting." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2711.
Full textReports on the topic "High pressure die casting"
Nakagawa, Masahiko, Koichi Chiba, and Eitaro Koya. Development of High-Pressure Die-Casting Simulation and Verification in Motorcycle Parts. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0025.
Full textPrindiville, J., S. Lee, and A. Gokhale. An Application of Trapped-Air Analysis to Large Complex High-Pressure Magnesium Casting. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/15014382.
Full textNakagawa, Masahiko, Koichi Chiba, and Eitaro Koya. Development of High-Pressure, Die-Casting Simulation and Verification in Motorcycle Frame Parts. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0090.
Full textSabau, Adrian S., Edward C. Hatfield, Ralph Barton Dinwiddie, Kazunori Kuwana, Valerio Viti, Mohamed I. Hassan, and Kozo Saito. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/932142.
Full textYamada, Youji, Hiroshi Yoshii, Satoshi Mochizuki, Yuuta Bannai, Jun Yaokawa, Koichi Anzai, and Katsunari Oikawa. Evaluation of J Factor and Leakage Quality for High Pressure Die Casting Applied to Closed-deck Type Cylinder Block. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0504.
Full textUhara, Takehiro, and Hirotaka Kurita. The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9046.
Full textZhang, X. An evaluation of direct pressure sensors for monitoring the aluminum die casting process. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/307969.
Full textVenkatasamy, Vasanth Kumar. Analysis of in-cavity thermal and pressure characteristics in aluminum alloy die casting. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/578731.
Full textAgrawal, Pradeep K. High Pressure Biomass Gasification. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1275263.
Full textRucinski, Russell A. High Pressure Back up Air Piping Pressure Test. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/1033666.
Full text