Journal articles on the topic 'High pressure microfluidics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High pressure microfluidics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ogden, Sam, Roger Bodén, and Klas Hjort. "A Latchable Valve for High-Pressure Microfluidics." Journal of Microelectromechanical Systems 19, no. 2 (April 2010): 396–401. http://dx.doi.org/10.1109/jmems.2010.2041749.
Full textChen, C. F., J. Liu, L. P. Hromada, C. W. Tsao, C. C. Chang, and D. L. DeVoe. "High-pressure needle interface for thermoplastic microfluidics." Lab Chip 9, no. 1 (2009): 50–55. http://dx.doi.org/10.1039/b812812j.
Full textBodén, Roger, Klas Hjort, Jan-Åke Schweitz, and Urban Simu. "A metallic micropump for high-pressure microfluidics." Journal of Micromechanics and Microengineering 18, no. 11 (September 26, 2008): 115009. http://dx.doi.org/10.1088/0960-1317/18/11/115009.
Full textAndersson, Martin, Klas Hjort, and Lena Klintberg. "Fracture strength of glass chips for high-pressure microfluidics." Journal of Micromechanics and Microengineering 26, no. 9 (July 8, 2016): 095009. http://dx.doi.org/10.1088/0960-1317/26/9/095009.
Full textSerra, M., I. Pereiro, A. Yamada, J. L. Viovy, S. Descroix, and D. Ferraro. "A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications." Lab on a Chip 17, no. 4 (2017): 629–34. http://dx.doi.org/10.1039/c6lc01319h.
Full textLee, Kevin S., and Rajeev J. Ram. "Plastic–PDMS bonding for high pressure hydrolytically stable active microfluidics." Lab on a Chip 9, no. 11 (2009): 1618. http://dx.doi.org/10.1039/b820924c.
Full textYao, Junyi, Fan Lin, Hyun Kim, and Jaewon Park. "The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator." Micromachines 10, no. 12 (November 23, 2019): 808. http://dx.doi.org/10.3390/mi10120808.
Full textGerhardt, Renata F., Andrea J. Peretzki, Sebastian K. Piendl, and Detlev Belder. "Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip." Analytical Chemistry 89, no. 23 (November 15, 2017): 13030–37. http://dx.doi.org/10.1021/acs.analchem.7b04331.
Full textHuang, Chien-Chih, Martin Z. Bazant, and Todd Thorsen. "Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics." Lab Chip 10, no. 1 (2010): 80–85. http://dx.doi.org/10.1039/b915979g.
Full textChen, Weiqi, Bruno Pinho, and Ryan L. Hartman. "Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor." Lab on a Chip 17, no. 18 (2017): 3051–60. http://dx.doi.org/10.1039/c7lc00645d.
Full textRipken, Renée M., Stefan Schlautmann, Remco G. P. Sanders, Johannes G. E. Gardeniers, and Séverine Le Gac. "Monitoring phase transition of aqueous biomass model substrates by high-pressure and high-temperature microfluidics." ELECTROPHORESIS 40, no. 4 (January 4, 2019): 563–70. http://dx.doi.org/10.1002/elps.201800431.
Full textWasay, A., and D. Sameoto. "Gecko gaskets for self-sealing and high-strength reversible bonding of microfluidics." Lab on a Chip 15, no. 13 (2015): 2749–53. http://dx.doi.org/10.1039/c5lc00342c.
Full textFilatov, Nikita A., Anatoly A. Evstrapov, and Anton S. Bukatin. "Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device." Micromachines 12, no. 6 (June 5, 2021): 662. http://dx.doi.org/10.3390/mi12060662.
Full textAndersson, Martin, Johan Ek, Ludvig Hedman, Fredrik Johansson, Viktor Sehlstedt, Jesper Stocklassa, Pär Snögren, et al. "Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics." Journal of Micromechanics and Microengineering 27, no. 1 (November 16, 2016): 015018. http://dx.doi.org/10.1088/0960-1317/27/1/015018.
Full textCiftlik, A. T., and M. A. M. Gijs. "A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics." Journal of Micromechanics and Microengineering 21, no. 3 (February 8, 2011): 035011. http://dx.doi.org/10.1088/0960-1317/21/3/035011.
Full textBergs, Christian, Paul Simon, Yurii Prots, and Andrij Pich. "Ultrasmall functional ZnO2 nanoparticles: synthesis, characterization and oxygen release properties." RSC Advances 6, no. 88 (2016): 84777–86. http://dx.doi.org/10.1039/c6ra16009c.
Full textChen, Siyuan, Wei Liu, Jiangling Wan, Xin Cheng, Conghui Gu, Hui Zhou, Shan Chen, Xiaojing Zhao, Yuxiang Tang, and Xiangliang Yang. "Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique." Drug Development and Industrial Pharmacy 39, no. 1 (November 2, 2012): 20–28. http://dx.doi.org/10.3109/03639045.2011.650648.
Full textCiftlik, Ata Tuna, and Martin A. M. Gijs. "Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices." Lab Chip 12, no. 2 (2012): 396–400. http://dx.doi.org/10.1039/c1lc20727j.
Full textKarakitsiou, Stamatina, Bodil Holst, and Alex Christian Hoffmann. "Pressure-Driven Gas Flow through Nano-Channels at High Knudsen Numbers." Journal of Nano Research 50 (November 2017): 116–27. http://dx.doi.org/10.4028/www.scientific.net/jnanor.50.116.
Full textNatu, Rucha, Suvajyoti Guha, Seyed Ahmad Reza Dibaji, and Luke Herbertson. "Assessment of Flow through Microchannels for Inertia-Based Sorting: Steps toward Microfluidic Medical Devices." Micromachines 11, no. 10 (September 24, 2020): 886. http://dx.doi.org/10.3390/mi11100886.
Full textNawrot, Witold, Kamila Drzozga, Sylwia Baluta, Joanna Cabaj, and Karol Malecha. "A Fluorescent Biosensors for Detection Vital Body Fluids’ Agents." Sensors 18, no. 8 (July 24, 2018): 2357. http://dx.doi.org/10.3390/s18082357.
Full textHilber, W., and B. Jakoby. "Ethanol Fermentation as the Basis for Autonomous, Long-term and High-pressure Fluid Transport in Microfluidics." Procedia Engineering 120 (2015): 100–105. http://dx.doi.org/10.1016/j.proeng.2015.08.575.
Full textSchneider, Stefan, Eduardo J. S. Brás, Oliver Schneider, Katharina Schlünder, and Peter Loskill. "Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip." Micromachines 12, no. 5 (May 18, 2021): 575. http://dx.doi.org/10.3390/mi12050575.
Full textRupp, Jochen, Manuela Schmidt, Bettina Günther, Michael Stumber, Sven Zinober, Roland Müller-Fiedler, Bashir Alabsi, et al. "The Way to High Volume Fabrication of Lab-on-a-Chip Devices—A Technological Approach for Polymer Based Microfluidic Systems with Integrated Active Valves and Pumps." Journal of Microelectronics and Electronic Packaging 6, no. 4 (October 1, 2009): 198–204. http://dx.doi.org/10.4071/1551-4897-6.4.198.
Full textWang, Fei, and Xiaoming Tao. "Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Structure Design for Low Pressure Measurement." Sensors 21, no. 14 (July 10, 2021): 4732. http://dx.doi.org/10.3390/s21144732.
Full textWoodall, Julia Lins Arrighi, Meredith Ellen Fay, Jordan Ciciliano, Reza Abbaspour, Muhannad S. Bakir, and Wilbur A. Lam. "Real-Time Visualization of Shear-Dependent Erythrocyte Deformation into Schistocytes Using Single Micron Microfluidics." Blood 132, Supplement 1 (November 29, 2018): 1030. http://dx.doi.org/10.1182/blood-2018-99-120113.
Full textTripathi, J. P., U. P. Singh, and B. K. Singh. "Homotopy Analysis of Circular Plates Squeeze Film Bearings Lubricated with Couple Stress Fluids: Piezo-Viscous Model." Science & Technology Journal 8, no. 2 (July 1, 2020): 95–102. http://dx.doi.org/10.22232/stj.2020.08.02.14.
Full textFarré-Lladós, Josep, Jasmina Casals-Terré, Jordi Voltas, and Lars G. Westerberg. "The use of rapid prototyping techniques (RPT) to manufacture micro channels suitable for high operation pressures and μPIV." Rapid Prototyping Journal 22, no. 1 (January 18, 2016): 67–76. http://dx.doi.org/10.1108/rpj-02-2014-0019.
Full textLuther, Sebastian K., and Andreas Braeuer. "High-pressure microfluidics for the investigation into multi-phase systems using the supercritical fluid extraction of emulsions (SFEE)." Journal of Supercritical Fluids 65 (May 2012): 78–86. http://dx.doi.org/10.1016/j.supflu.2012.02.029.
Full textMutlu, Baris R., Jon F. Edd, and Mehmet Toner. "Oscillatory inertial focusing in infinite microchannels." Proceedings of the National Academy of Sciences 115, no. 30 (July 10, 2018): 7682–87. http://dx.doi.org/10.1073/pnas.1721420115.
Full textHan, Wenbo, and Xueye Chen. "Numerical Simulation of the Droplet Formation in a T-Junction Microchannel by a Level-Set Method." Australian Journal of Chemistry 71, no. 12 (2018): 957. http://dx.doi.org/10.1071/ch18320.
Full textPreiss, Felix Johannes, Teresa Dagenbach, Markus Fischer, and Heike Petra Karbstein. "Development of a Pressure Stable Inline Droplet Generator with Live Droplet Size Measurement." ChemEngineering 4, no. 4 (November 10, 2020): 60. http://dx.doi.org/10.3390/chemengineering4040060.
Full textCromwell, Evan F., Michelle Leung, Matthew Hammer, Anthony Thai, Rashmi Rajendra, and Oksana Sirenko. "Disease Modeling with 3D Cell-Based Assays Using a Novel Flowchip System and High-Content Imaging." SLAS TECHNOLOGY: Translating Life Sciences Innovation 26, no. 3 (March 30, 2021): 237–48. http://dx.doi.org/10.1177/24726303211000688.
Full textSepulveda, Julian, Agnes Montillet, Dominique Della Valle, Thanina Amiar, Hubert Ranchon, Catherine Loisel, and Alain Riaublanc. "Experimental determination and modeling of flow curves of xanthan gum solutions over a large range of shear rates." Applied Rheology 31, no. 1 (January 1, 2021): 24–38. http://dx.doi.org/10.1515/arh-2020-0116.
Full textWan, Jing, Chong Cheng Liang, Feng Yan, Ke Gu, Shuai Zhang, Zhi Guo Xie, and Mu Sen Lin. "Electromagnetic Drive of Room-Temperature Ionic Liquids and Application." Applied Mechanics and Materials 189 (July 2012): 374–78. http://dx.doi.org/10.4028/www.scientific.net/amm.189.374.
Full textSathyanarayanan, Gowtham, Markus Haapala, and Tiina Sikanen. "Interfacing Digital Microfluidics with Ambient Mass Spectrometry Using SU-8 as Dielectric Layer." Micromachines 9, no. 12 (December 8, 2018): 649. http://dx.doi.org/10.3390/mi9120649.
Full textOberti, Stefano, Dirk Möller, Sascha Gutmann, Adrian Neild, and Jürg Dual. "Novel sample preparation technique for protein crystal X-ray crystallographic analysis combining microfluidics and acoustic manipulation." Journal of Applied Crystallography 42, no. 4 (June 13, 2009): 636–41. http://dx.doi.org/10.1107/s0021889809019177.
Full textAnderluzzi, Giulia, Gustavo Lou, Yang Su, and Yvonne Perrie. "Scalable Manufacturing Processes for Solid Lipid Nanoparticles." Pharmaceutical Nanotechnology 7, no. 6 (December 10, 2019): 444–59. http://dx.doi.org/10.2174/2211738507666190925112942.
Full textKuhn, Donald E., Sashwati Roy, Jared Radtke, Sudip Gupta, and Chandan K. Sen. "Laser microdissection and pressure-catapulting technique to study gene expression in the reoxygenated myocardium." American Journal of Physiology-Heart and Circulatory Physiology 290, no. 6 (June 2006): H2625—H2632. http://dx.doi.org/10.1152/ajpheart.01346.2005.
Full textChin, Jit Kai. "STUDY OF LIQUID-LIQUID SLUG BREAK UP MECHANISM IN A MICROCHANNEL T-JUNCTION AT VARIOUS MODIFIED WEBER NUMBER." IIUM Engineering Journal 12, no. 2 (October 18, 2011): 111–22. http://dx.doi.org/10.31436/iiumej.v12i2.70.
Full textZhang, Xinjie, and Ayobami Elisha Oseyemi. "Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery." Micromachines 10, no. 12 (November 21, 2019): 798. http://dx.doi.org/10.3390/mi10120798.
Full textGong, Jiahao, Qifu Wang, Bingxin Liu, Huimin Zhang, and Lin Gui. "A Novel On-Chip Liquid-Metal-Enabled Microvalve." Micromachines 12, no. 9 (August 30, 2021): 1051. http://dx.doi.org/10.3390/mi12091051.
Full textYáñez, Diana, Rui D. M. Travasso, and Eugenia Corvera Poiré. "Resonances in the response of fluidic networks inherent to the cooperation between elasticity and bifurcations." Royal Society Open Science 6, no. 9 (September 25, 2019): 190661. http://dx.doi.org/10.1098/rsos.190661.
Full textAadland, Reidun C., Salem Akarri, Ellinor B. Heggset, Kristin Syverud, and Ole Torsæter. "A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR." Nanomaterials 10, no. 7 (July 1, 2020): 1296. http://dx.doi.org/10.3390/nano10071296.
Full textDieujuste, Darryl, Jia Liu, E. Du, and Ofelia A. Alvarez. "Development of a Low-Cost Electrical Impedance-Based Microflow Cytometer." Blood 134, Supplement_1 (November 13, 2019): 4665. http://dx.doi.org/10.1182/blood-2019-129068.
Full textWang, Weiqiang, and Rui Zhang. "Interplay of Active Stress and Driven Flow in Self-Assembled, Tumbling Active Nematics." Crystals 11, no. 9 (September 4, 2021): 1071. http://dx.doi.org/10.3390/cryst11091071.
Full textCardoso, André, Raquel Pinto, Elisabete Fernandes, and Steffen Kroehnert. "Implementation of Wafer Level Packaging KOZ using SU-8 as Dielectric for the Merging of WL Fan Out to Microfluidic and Biomedical Applications." International Symposium on Microelectronics 2017, no. 1 (October 1, 2017): 000569–75. http://dx.doi.org/10.4071/isom-2017-tha34_118.
Full textPatel, Kamlesh D., Kenneth A. Peterson, and Kyle W. Hukari. "Low Temperature Cofired Ceramic Microfluidic Microsystems for High Temperature and High Pressure Applications." Journal of Microelectronics and Electronic Packaging 3, no. 3 (July 1, 2006): 152–58. http://dx.doi.org/10.4071/1551-4897-3.3.152.
Full textWang, Bao Jun, Fei Xie, Wei Wang, Wen Gang Wu, and Zhi Hong Li. "Bubble-Induced Relaxation in High-Pressure Microfluidic Systems." Key Engineering Materials 562-565 (July 2013): 581–84. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.581.
Full textCheng, Xiang, Matthew D. Ooms, and David Sinton. "Biomass-to-biocrude on a chip via hydrothermal liquefaction of algae." Lab on a Chip 16, no. 2 (2016): 256–60. http://dx.doi.org/10.1039/c5lc01369k.
Full text