Academic literature on the topic 'High pressure spray combustion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High pressure spray combustion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High pressure spray combustion"
Yue, Zongyu, and Rolf D. Reitz. "An equilibrium phase spray model for high-pressure fuel injection and engine combustion simulations." International Journal of Engine Research 20, no. 2 (December 6, 2017): 203–15. http://dx.doi.org/10.1177/1468087417744144.
Full textWang, Jian Ying, and Xi Lin Dong. "Experimental Study on Radiant Heat of Market Shelf Fire Decayed by High-Pressure Water Mist System." Advanced Materials Research 518-523 (May 2012): 3699–702. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.3699.
Full textAndsaler, Adiba Rhaodah, Amir Khalid, Him Ramsy, and Norrizam Jaat. "A Review Paper on Simulation and Modeling of Combustion Characteristics under High Ambient and High Injection of Biodiesel Combustion." Applied Mechanics and Materials 773-774 (July 2015): 580–84. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.580.
Full textKuti, Olawole Abiola, Jingyu Zhu, Keiya Nishida, Xiangang Wang, and Zuohua Huang. "SP3-1 Spray, Ignition and Combustion Characteristics of Biodiesel and Diesel Fuels Injected by Micro-Hole Nozzle under Ultra-High Injection Pressure(SP: Spray and Spray Combustion,General Session Papers)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2012.8 (2012): 674–79. http://dx.doi.org/10.1299/jmsesdm.2012.8.674.
Full textKawaharada, Noritsune, Lennart Thimm, Toni Dageförde, Karsten Gröger, Hauke Hansen, and Friedrich Dinkelacker. "Approaches for Detailed Investigations on Transient Flow and Spray Characteristics during High Pressure Fuel Injection." Applied Sciences 10, no. 12 (June 26, 2020): 4410. http://dx.doi.org/10.3390/app10124410.
Full textMehta, Pramod S., S. Rajkumar, and Shamit Bakshi. "SP1-1 Modeling Spray and Mixing Processes in High Pressure Multiple-injection CRDI Engines : Modeling CRDI Engines(SP: Spray and Spray Combustion,General Session Papers)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2012.8 (2012): 628–34. http://dx.doi.org/10.1299/jmsesdm.2012.8.628.
Full textWISŁOCKI, Krzysztof, Ireneusz PIELECHA, Jakub CZAJKA, and Dmitrij MASLENNIKOV. "The qualitative spray analysis of liquid fuel in high-pressure piezoelectric injection system." Combustion Engines 143, no. 4 (November 1, 2010): 31–44. http://dx.doi.org/10.19206/ce-117129.
Full textTang, Yuanzhi, Diming Lou, Chengguan Wang, Piqiang Tan, Zhiyuan Hu, Yunhua Zhang, and Liang Fang. "Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel." Energies 13, no. 23 (November 25, 2020): 6210. http://dx.doi.org/10.3390/en13236210.
Full textPark, Kweonha. "The flame behaviour of liquefied petroleum gas spray impinging on a flat plate in a constant volume combustion chamber." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 5 (May 1, 2005): 655–63. http://dx.doi.org/10.1243/095440705x11031.
Full textPickett, Lyle M., Caroline L. Genzale, Gilles Bruneaux, Louis-Marie Malbec, Laurent Hermant, Caspar Christiansen, and Jesper Schramm. "Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities." SAE International Journal of Engines 3, no. 2 (October 25, 2010): 156–81. http://dx.doi.org/10.4271/2010-01-2106.
Full textDissertations / Theses on the topic "High pressure spray combustion"
Emre, Oguz. "Modeling of spray polydispersion with two-way turbulent interactions for high pressure direct injection in engines." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0029/document.
Full textThe ability to simulate two-phase flows is of crucial importance for the prediction of internal combustion engine (ICE) performance and pollutant emissions. The direct injection of the liquid fuel inside the combustion chamber generates a cloud of polydisperse droplets, called spray, far downstream of the injector. From the modeling point of view, the emergence of Eulerian techniques for the spray description is considered promising by the scientific community. Moreover, the bottleneck issue for Eulerian methods of capturing the droplet size distribution with a reasonable computational cost, has been successfully tackled through the development of Eulerian Multi Size Moment (EMSM) method. Towards realistic ICE applications, the present PhD work addresses the modeling of two-way turbulent interactions between the polydisperse spray and its surrounding gas-phase through EMSM method. Following to the moving mesh formalism ArbitraryLagrangian Eulerian (ALE), the source terms arising in the two-phase model have been treated separately from other contributions. The equation system is closed through the maximum entropy (ME) reconstruction technique originally introduced for EMSM. A new resolution strategy is developed in order to guarantee the numerical stability under veryfast time scales related to mass, momentum and energy transfers, while preserving the realizability condition associated to the set of high order moments. From the academic point of view, both the accuracy and the stability have been deeply investigated under both constant and time dependent evaporation laws. All these developments have beenintegrated in the industrial software IFP-C3D dedicated to compressible reactive flows. In the context of 2-D injection simulations, very encouraging quantitative and qualitative results have been obtained as compared to the reference Lagrangian simulation of droplets. Moreover, simulations conducted under a typical 3-D configuration of a combustion chamber and realistic injection conditions have given rise to fruitful achievements. Within the framework of industrial turbulence modeling, a Reynolds averaged (RA) extension of the two-way coupling equations is derived, providing appropriate closures for turbulent correlations. The correct energy partitions inside the spray and turbulent interactions between phases have been demonstrated through homogeneous test-cases. The latter cases gave also some significant insights on underlying physics in ICE. This new RA approach is now ready for ICE application simulations
Domingo-Alvarez, Patricia. "High-pressure combustion large-eddy simulation for an a priori optical diagnostics validation." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR26.
Full textTo reduce the specific consumption and CO2 emissions of aircraft engines, manufacturers are seeking to increase the maximum pressure in Brayton’s thermodynamic cycle. This pressure increase has a strong impact on the flame structure (thickness, speed, chemical kinetics) but also on pollutant emissions. High pressure leads to an increase in NOx emissions, which can be reduced by the adoption of low-NOx technologies. It also impacts the radiative properties of the burnt gases. These burnt gases are important since they are used in optical diagnostics to characterize the flame. A new Lean-Premixed (LP) injection system for aeronautical burners was experimentally investigated with advanced optical diagnostics at CORIA laboratory in Rouen. This work aims to perform Large-Eddy Simulations of this injector at a reference operating point at 8.33 bar and669.3K. The spray features impact on the flame is assessed by a specific parametric study. An analysis of the characteristic evaporation time and its influence on the flame is carried out. This parametric study shows that the quality of atomization strongly influences the flame topology and fuel distribution in the combustion chamber. The numerical results are then compared with the experimental data. In addition, a two-level model capable of simulating Laser Induced Fluorescence (LIF) has been developed. The purpose of this model is to be able to compare raw images obtained experimentally with numerical results. To this purpose, the interaction between the laser sheet and the burnt gases is modeled to quantify the absorption and quenching phenomena, which are important to obtain quantitative measurements from a fluorescence signal. With this model, simulations are used to evaluate the radiative properties of the burnt gases along the laser sheet path
Peraza, Ávila Jesús Enrique. "Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/149389.
Full text[ES] El potencial de los motores diesel en términos de robustez, eficiencia y la densidad de energía los ha hecho ser ampliamente usados como generadores de energía y sistemas propulsivos. Específicamente, la atomización de combustible, vaporización y mezcla de aire y combustible tienen un efecto fundamental en el proceso de combustión y, en consecuencia, un impacto directo en la formación de emisiones contaminantes, consumo de combustible y generación de ruido. Dado que la cámara de combustión tiene un espacio limitado con respecto la capacidad de penetración del chorro, el impacto de la pared se considera bastante común en motores de inyección directa diésel, que tienen una influencia relevante en la evolución del chorro y su interacción con el aire circundante y las paredes sólidas. Esto hace de interacción chorro-pared, un factor importante para el proceso de combustión que aún es dificilmente comprendido. En condiciones de arranque en frío, las bajas presiones y temperaturas en la cámara promueven la deposición de combustible en la pared del pistón, lo que conduce a un aumento en los niveles de formación de hidrocarburos no quemados. Además, las tendencias modernas de diseño como el incremento de las presiones de rail en los sistemas de inyección y la progresiva reducción en la cilindrada de los motores, favorecen la aparición de colisiones entre chorro y pared. A pesar de la evidente importancia en la comprensión de este fenómeno y los esfuerzos de los investigadores para alcanzarla, la transitoria naturaleza del proceso de inyección, sus pequeñas escalas de temporales y la complejidad de los fenómenos físicos que tienen lugar en las proximidades de la pared, hacen que la observación directa de esta interacción chorro-pared sea un desafío. Aunque las herramientas computacionales han demostrado ser invaluables en este campo de estudio, la necesidad de datos experimentales confiables para el desarrollo de esos modelos predictivos está muy presente. Esta tesis tiene como objetivo arrojar luz sobre las características fundamentales de la interacción chorro-pared (SWI por sus siglas en inglés) en condiciones de cámara similares a las de un motor diesel. Se colocó una pared plana a diferentes distancias de impacto y ángulos con respecto al jet. De esta manera, dos tipos diferentes de investigaciones experimentales sobre chorros en colisión se llevaron a cabo: se empleó una pared de cuarzo transparente en la cámara para, de forma aislada, analizar las características macroscópicas del chorro en condiciones evaporativas inertes y reactivas, que pueden observarse lateralmente y a través de la pared, gracias al uso de una instalación de alta presión y alta temperatura ópticamente accesible. Esta misma instalación se utilizó en el segundo tipo de experimentos en los que se introdujo una pared de acero inoxidable para capturar adicionalmente el efecto de las condiciones de operación en el flujo de calor entre ésta y el chorro durante los eventos de inyección y combustión y para determinar cómo la evolución del chorro y la llama son afectadas por una situación realista de transferencia de calor. Esta pared fue instrumentada para controlar la temperatura inicial de su superficie expuesta a la cámara y medir su variación con el tiempo, utilizando termopares de alta velocidad. Ensayos en condiciones de chorro libre también se realizaron para proporcionar una base comparativa sólida para esos experimentos.
[CA] El potencial dels motors dièsel en termes de robustesa, eficiència i la densitat d'energia els ha fet ser àmpliament usats com a generadors d'energia i sistemes propulsius. Específicament, l'atomització de combustible, vaporització i barreja d'aire i combustible tenen un efecte fonamental en el procés de combustió i, en conseqüència, un impacte directe en la formació d'emissions contaminants, consum de combustible i generació de soroll. Atès que la cambra de combustió té un espai limitat pel que fa la capacitat de penetració de l'raig, l'impacte de la paret es considera bastant comú en motors d'injecció directa dièsel, que tenen una influència rellevant en l'evolució del doll i la seva interacció amb el aire circumdant i les parets sòlides. Això fa d'interacció doll-paret, un factor important per al procés de combustió que encara és difícilment comprès. En condicions d'arrencada en fred, les baixes pressions i temperatures a la cambra promouen la deposició de combustible a la paret del pistó, el que condueix a un augment en els nivells de formació d'hidrocarburs no cremats. A més, les tendències modernes de disseny com l'increment de les pressions de rail en els sistemes d'injecció i la progressiva reducció en la cilindrada dels motors, afavoreixen l'aparició de col·lisions entre el doll i la paret. Tot i l'evident importància en la comprensió d'aquest fenomen i els esforços dels investigadors per aconseguir-la, la transitòria naturalesa de l'procés d'injecció, les seves petites escales de temporals i la complexitat dels fenòmens físics que tenen lloc en les proximitats de la paret , fan que l'observació directa d'aquesta interacció doll-paret siga un desafiament. Tot i que les eines computacionals han demostrat ser invaluables en aquest camp d'estudi, la necessitat de dades experimentals fiables per al desenvolupament d'aquests models predictius està molt present. Aquesta tesi té com a objectiu donar llum sobre les característiques fonamentals de la interacció doll-paret (SWI per les seues sigles en anglès) en condicions de cambra similars a les d'un motor dièsel. Es va col·locar una paret plana a diferents distàncies d'impacte i angles pel que fa al jet. D'aquesta manera, dos tipus diferents d'investigacions experimentals sobre dolls en col·lisió es van dur a terme: es va emprar una paret de quars transparent a la cambra per, de forma aïllada, analitzar les característiques macroscòpiques del doll en condicions evaporació inerts i reactives, que poden observar lateralment i a través de la paret, gràcies a l'ús d'una instal·lació d'alta pressió i alta temperatura òpticament accessible. Aquesta mateixa instal·lació es va utilitzar en el segon tipus d'experiments en els quals es va introduir una paret d'acer inoxidable per capturar addicionalment l'efecte de les condicions d'operació en el flux de calor entre aquesta i el dull durant els esdeveniments d'injecció i combustió i per determinar com l'evolució del doll i la flama són afectades per una situació realista de transferència de calor. Aquesta paret va ser instrumentada per controlar la temperatura inicial de la seua superfície exposada a la càmera i mesurar la seua variació amb el temps, utilitzant termoparells d'alta velocitat. Assajos en condicions de doll lliure també es van realitzar per proporcionar una base comparativa sòlida per a aquests experiments.
Peraza Ávila, JE. (2020). Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149389
TESIS
Aye, Maung Maung [Verfasser]. "Spray Combustion of Single- and Multi-component Fuels under Engine-like Conditions in a High Pressure Chamber / Maung Maung Aye." Aachen : Shaker, 2015. http://d-nb.info/1070152005/34.
Full textNilaphai, Ob. "Vaporization and Combustion Processes of Alcohols and Acetone-Butanol-Ethanol (ABE) blended in n-Dodecane for High Pressure-High Temperature Conditions : Application to Compression Ignition Engine." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2020/document.
Full textThe growing concern in recent decades, linked to the depletion of oil resources and global warming by greenhouse gases has increased the interest of butanol as an alternative fuel in the transport sector. However, the low yield of production and separation processes still prevents its commercialization as a fuel. Therefore, the intermediate fermentation mixture of butanol production, Acetone-Butanol-Ethanol (ABE), is increasingly considered as a potential alternative fuel because of its similar properties to butanol and its advantages in terms of the energy and cost in the separation process.The context of this work aims to study the impact of fuel properties on the spray and combustion processes of ABE mixture and alcohol fuels, blended with the diesel surrogate fuel, n-dodecane, in different volume ratio from 20% to 50%. A new combustion chamber called "New One Shot Engine," was designed and developed to reach the high-pressure and high temperatureconditions of "Spray-A" (60 bar, 800-900 K and 22.8 kg/m³) defined by the Engine Combustion Network (ECN).The macroscopic spray and combustion parameters were characterized by using the several optical techniques (extinction,Schlieren, chemiluminescence of OH*) under non-reactive (pure Nitrogen) and reactive (15% of oxygen) conditions. These experimental results not only made it possible to study the molecular oxygen impact and provide a new accurate database,but also to affirm the possibility of using ABE up to 20% by volume in compression-ignition engines, as its spray and combustion characteristics similar to conventional diesel fuel
Malbois, Pierre. "Analyse expérimentale par diagnostics lasers du mélange kérosène/air et de la combustion swirlée pauvre prémélangée, haute-pression issue d’un injecteur Low-NOx." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR25/document.
Full textAeronautical engine manufacturers are banking on the development of innovative fuel injection systems to reduce fuel consumption and pollutant emissions. The aim of the thesis is to contribute to the experimental investigation of a "Lean Premixed" injector by developing laser diagnostics coupling approaches based on Mie scattering and fluorescent emission of tracers. Measurements are performed at high pressure on the HERON combustion test bench. An innovative approach with fluorescence imaging of kerosene has resulted in the quantification of the kerosene/air mixture. The flame structure was analyzed simultaneously by OH-PLIF and velocity PIV measurements were performed to complete this analysis. A preliminary development of CO-PLIF was also conducted. The numerous measurements provided a detailed analysis of the mechanisms of flame/spray/aerodynamic interactions during a swirl-stabilized kerosene/air combustion at high pressure
Salcedo, Saulo Alfredo Gómez. "CFD analysis in spray combustion using a pressure swirl injector." Instituto Tecnológico de Aeronáutica, 2015. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3292.
Full textConley, Clark Alexander. "High-pressure GH₂/GO₂ combustion dynamics." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013840.
Full textVerdier, Antoine. "Experimental study of dilute spray combustion." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR27/document.
Full textLiquid fuels are the primary energy source in a wide range of applications including industrial and residential furnaces, internal combustion engines and propulsion systems. Pollutant emission reduction is currently one of the major constraints for the design of the next generation combustion chamber. Spray combustion involves many complex physical phenomena including atomization, dispersion, evaporation and combustion, which generally take place simultaneously or within very small regions in the combustion chambers. Although numerical simulation is a valuable tool to tackle these different interactions between liquid and gas phases, the method needs to be validated through reliable experimental studies. Therefore, accurate experimental data on flame structure and on liquid and gas properties along the evaporation and combustion steps are needed and are still challenging. A joint effort between numerical and experimental teams is necessary to meet tomorrow's energy challenges and opportunities. The complexity of the real aeronautical configurations implies to study the effect of local properties in flame dynamics on a canonical configuration, which presents the essential feature of very well defined boundary conditions. This work, carried out within the framework of the ANR TIMBER project, aims to improve the understanding of two-phase flow combustion, as well as to produce an efficient and original database for the validation of the models used in LES
Demosthenous, Alexis. "Soot formation and oxidation in a high-pressure spray flame." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424461.
Full textBooks on the topic "High pressure spray combustion"
Kunkulagunta, K. R. Spray, combustion and emission studies in high speed DI diesel engines. Manchester: UMIST, 1995.
Find full textJankowsky, Robert S. Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Find full textJankovsky, Robert S. High-area-ratio rocket nozzle at high combustion chamber pressure--experimental and analytical validation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textMasters, Philip A. High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion. Cleveland, Ohio: Lewis Research Center, 1988.
Find full textKazi, Rafiq Akhtar. A high pressure kinetic study of the in-situ combustion process for oil recovery. Salford: University of Salford, 1995.
Find full textKinzler, D. D. Experimental study of high levels of SOb2 sremoval in atmospheric-pressure fluidized-bed combustors. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1989.
Find full textKinzler, D. D. Experimental study of high levels of SO2 removal in atmospheric-pressure fluidized-bed combustors. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1989.
Find full textKinzler, D. D. Experimental study of high levels of SO removal in atmospheric-pressure fluidized-bed combustors. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1989.
Find full textCarter, Campbell D. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames. West Lafayette, Ind: Purdue University, 1990.
Find full textCarter, Campbell D. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames. West Lafayette, Ind: Purdue University, 1990.
Find full textBook chapters on the topic "High pressure spray combustion"
Nakayama, M. "Development of a Time-Resolved Particle Sizer and Spray Sizing in High Back-Pressure Injection." In Laser Diagnostics and Modeling of Combustion, 63–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-45635-0_8.
Full textRokni, M. Reza, Steven R. Nutt, Christian A. Widener, Grant A. Crawford, and Victor K. Champagne. "Structure–Properties Relations in High-Pressure Cold-Sprayed Deposits." In Cold-Spray Coatings, 143–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67183-3_5.
Full textHanabusa, M., T. Nomura, S. Iguchi, S. Furuno, and T. Inoue. "CARS Thermometry For High Pressure Gases." In Laser Diagnostics and Modeling of Combustion, 111–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-45635-0_14.
Full textRenz, U. "Investigation of a High Pressure Oxy-Coal Process." In Cleaner Combustion and Sustainable World, 111–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_18.
Full textLeBlanc, Simon, Xiao Yu, and Ming Zheng. "High Pressure DME Spray for Compression Ignition Engines." In Springer Proceedings in Energy, 49–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38804-1_3.
Full textModest, Michael F., and Daniel C. Haworth. "Radiative Heat Transfer in High-Pressure Combustion Systems." In Radiative Heat Transfer in Turbulent Combustion Systems, 137–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27291-7_7.
Full textSingh, Pawan J., J. Munoz, W. L. Chen, and William R. Kratochvil. "Ultra-High Pressure Waterjet Removal of Thermal Spray Coatings." In Jet Cutting Technology, 461–80. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2678-6_32.
Full textYue, Zongyu, and Rolf D. Reitz. "Simulation of the High-Pressure Combustion Process in Diesel Engines." In High-Pressure Flows for Propulsion Applications, 731–68. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0731.0768.
Full textSadiki, Amsini, W. Ahmadi, and Mouldi Chrigui. "Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part II: Influence of High Combustion Temperature on Spray Droplet Evaporation." In ERCOFTAC Series, 111–32. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0_4.
Full textForliti, D. J., I. A. Leyva, D. G. Talley, J. I. Rodriguez, S. Teshome, J. L. Wegener, M. Roa, and A. R. Karagozian. "Forced and Unforced Shear Coaxial Mixing and Combustion at Subcritical and Supercritical Pressures." In High-Pressure Flows for Propulsion Applications, 233–79. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0233.0280.
Full textConference papers on the topic "High pressure spray combustion"
Rotondi, Rossella, and Cinzio Arrighetti. "Modeling High-Pressure Spray Impingement." In ASME 2003 Internal Combustion Engine and Rail Transportation Divisions Fall Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/icef2003-0739.
Full textDe Vita, A., L. Di Angelo, L. Allocca, and S. Alfuso. "Evolution of a high-pressure spray from a swirled gasoline injector." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0055.
Full textZhao, Zhihao, Xiucheng Zhu, Le Zhao, Jeffrey Naber, and Seong-Young Lee. "Spray-Wall Dynamics of High-Pressure Impinging Combustion." In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-01-0067.
Full textFimml, Wolfgang, Christian Fuchs, Thomas Jauk, and Andreas Wimmer. "Optical Analysis and Simulation of Diesel Sprays in a High Pressure and High Temperature Spray Box." In ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1376.
Full textAllen, M., K. McManus, and D. Sonnenfroh. "PLIF imaging measurements in high-pressure spray flame combustion." In 30th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2913.
Full textGavaises, M., C. Arcoumanis, A. Theodorakakos, and G. Bergeles. "Structure of high-pressure diesel sprays." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0009.
Full textWang, Tsung-Cheng, Joong-Sub Han, Xingbin Xie, Ming-Chia Lai, Naeim A. Henein, Ernest Schwarz, and Walter Bryzik. "Direct Visualization of High Pressure Diesel Spray and Engine Combustion." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-3496.
Full textDe Giorgi, Maria Grazia, Aldebara Sciolti, and Antonio Ficarella. "Spray and Combustion Modeling in High Pressure Cryogenic Jet Flames." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69544.
Full textJames, Kemar C., Jin Wang, Zackery B. Morris, Michael C. Maynard, and Brian T. Fisher. "Development of a High-Pressure, High-Temperature, Optically Accessible Continuous-Flow Vessel for Fuel-Injection Experiments." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19102.
Full textShahangian, Navid, Damon Honnery, and Jamil Ghojel. "Homogenisation of High Pressure Diesel Fuel Spray Combustion Using Porous Ceramic Media." In ASME 2012 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icef2012-92143.
Full textReports on the topic "High pressure spray combustion"
Skeen, Scott A., Julien Luc Manin, and Lyle M. Pickett. Advanced Diagnostics for High Pressure Spray Combustion. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1149303.
Full textT. E. Wierman. System Study: High-Pressure Core Spray 1998–2012. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1129949.
Full textSchroeder, John Alton. System Study: High-Pressure Core Spray 1998-2014. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1261235.
Full textSchroeder, John Alton. System Study: High-Pressure Core Spray 1998–2013. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1261717.
Full textMa, Zhegang, Kellie J. Kvarfordt, John A. Schroeder, and Thomas E. Wierman. System Study: High-Pressure Core Spray 1998–2018. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1631743.
Full textChris Guenther. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/828936.
Full textChris Guenther and Bill Rogers. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/833211.
Full textStefano Orsino. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/822037.
Full textChris Guenther, Ph D. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/814716.
Full textRutland, Christopher J. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/951592.
Full text