Academic literature on the topic 'High pressure spray combustion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High pressure spray combustion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High pressure spray combustion"

1

Yue, Zongyu, and Rolf D. Reitz. "An equilibrium phase spray model for high-pressure fuel injection and engine combustion simulations." International Journal of Engine Research 20, no. 2 (December 6, 2017): 203–15. http://dx.doi.org/10.1177/1468087417744144.

Full text
Abstract:
High-pressure fuel injection impacts mixture preparation, ignition and combustion in engines and other applications. Experimental studies have revealed the mixing-controlled and local phase equilibrium characteristics of liquid vaporization in high injection pressure diesel engine sprays. However, most computational fluid dynamics models for engine simulations spend much effort in solving for non-equilibrium spray processes. In this study, an equilibrium phase spray model is explored. The model is developed based on jet theory and a phase equilibrium assumption, without modeling drop breakup, collision and finite-rate interfacial vaporization processes. The proposed equilibrium phase spray model is validated extensively against experimental data in simulations of the engine combustion network Spray A and in an optical diesel engine. Predictions of liquid/vapor penetration, fuel mass fraction distribution, heat release rate and emission formation are all in good agreement with experimental data. In addition, good computational efficiency and grid-independency are also seen with the present equilibrium phase model. The examined operating conditions cover wide ranges that are relevant to internal combustion engines, which include ambient temperatures from 700 to 1400 K, ambient densities from 7.6 to 22.8 kg/m3 and injection pressures from 1200 to 1500 bar for diesel sprays.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Jian Ying, and Xi Lin Dong. "Experimental Study on Radiant Heat of Market Shelf Fire Decayed by High-Pressure Water Mist System." Advanced Materials Research 518-523 (May 2012): 3699–702. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.3699.

Full text
Abstract:
Experimental study on radiant heat of market shelf fire depressed by high-pressure water mist system was carried out. The experiment researched on typical burning parts and combustions of places like market, and chosen experimental combustion components. The results show that the concentrate spray of high-pressure water mist system can decay the radiant heat of fire shelf effectively. The higher the spray pressure of the system, the faster the decay rate of radiation heat.
APA, Harvard, Vancouver, ISO, and other styles
3

Andsaler, Adiba Rhaodah, Amir Khalid, Him Ramsy, and Norrizam Jaat. "A Review Paper on Simulation and Modeling of Combustion Characteristics under High Ambient and High Injection of Biodiesel Combustion." Applied Mechanics and Materials 773-774 (July 2015): 580–84. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.580.

Full text
Abstract:
This paper describes simulation of combustion characteristics under high ambient and high injection of biodiesel combustion by using CFD simulation. Diesel engine performance and emissions is strongly couple with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. The principal objective of this research is to seek the effect of temperature and pressure on the spray characteristics, as well as fuel-air mixing characteristics. Experiments were performed in a constant volume chamber at specified ambient gas temperature and pressure. This research was continued with injecting diesel fuel into the chamber using a Bosch common rail system. Direct photography technique with a digital camera was used to clarify the real images of spray pattern, liquid length and vapor penetration. The method of the simulation of real phenomenon of diesel combustion with optical access rapid compression machine is also reviewed and experimental results are presented. The liquid phase of the spray reaches a maximum penetration distance soon after the start of injection, while the vapor phase of the spray continues to penetrate downstream. The condition to which the fuel is affected was estimated by combining information on the block temperature, ambient temperature and photographs of the spray. The increases in ambient pressure inside the chamber resulting in gain of spray area and wider spray angle. Thus predominantly promotes for a better fuel-air mixing. All of the experiments will be conducted and run by using CFD. The simulation will show in the form of images.
APA, Harvard, Vancouver, ISO, and other styles
4

Kuti, Olawole Abiola, Jingyu Zhu, Keiya Nishida, Xiangang Wang, and Zuohua Huang. "SP3-1 Spray, Ignition and Combustion Characteristics of Biodiesel and Diesel Fuels Injected by Micro-Hole Nozzle under Ultra-High Injection Pressure(SP: Spray and Spray Combustion,General Session Papers)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2012.8 (2012): 674–79. http://dx.doi.org/10.1299/jmsesdm.2012.8.674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kawaharada, Noritsune, Lennart Thimm, Toni Dageförde, Karsten Gröger, Hauke Hansen, and Friedrich Dinkelacker. "Approaches for Detailed Investigations on Transient Flow and Spray Characteristics during High Pressure Fuel Injection." Applied Sciences 10, no. 12 (June 26, 2020): 4410. http://dx.doi.org/10.3390/app10124410.

Full text
Abstract:
High pressure injection systems have essential roles in realizing highly controllable fuel injections in internal combustion engines. The primary atomization processes in the near field of the spray, and even inside the injector, determine the subsequent spray development with a considerable impact on the combustion and pollutant formation. Therefore, the processes should be understood as much as possible; for instance, to develop mathematical and numerical models. However, the experimental difficulties are extremely high, especially near the injector nozzle or inside the nozzle, due to the very small geometrical scales, the highly concentrated optical dense spray processes and the high speed and drastic transient nature of the spray. In this study, several unique and partly recently developed techniques are applied for detailed measurements on the flow inside the nozzle and the spray development very near the nozzle. As far as possible, the same three-hole injector for high pressure diesel injection is used to utilize and compare different measurement approaches. In a comprehensive section, the approach is taken to discuss the measurement results in comparison. It is possible to combine the observations within and outside the injector and to discuss the entire spray development processes for high pressure diesel sprays. This allows one to confirm theories and to provide detailed and, in parts, even quantitative data for the validation of numerical models.
APA, Harvard, Vancouver, ISO, and other styles
6

Mehta, Pramod S., S. Rajkumar, and Shamit Bakshi. "SP1-1 Modeling Spray and Mixing Processes in High Pressure Multiple-injection CRDI Engines : Modeling CRDI Engines(SP: Spray and Spray Combustion,General Session Papers)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2012.8 (2012): 628–34. http://dx.doi.org/10.1299/jmsesdm.2012.8.628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WISŁOCKI, Krzysztof, Ireneusz PIELECHA, Jakub CZAJKA, and Dmitrij MASLENNIKOV. "The qualitative spray analysis of liquid fuel in high-pressure piezoelectric injection system." Combustion Engines 143, no. 4 (November 1, 2010): 31–44. http://dx.doi.org/10.19206/ce-117129.

Full text
Abstract:
The paper presents the methodology and tests results of the influence of the fuel injection pressure and combustion chamber back pressure on the changes of the fuel spray geometrical parameters injection uniformity and its quality during the injection. While evaluating the geometrical fuel spray parameters the spray penetration, speed of propagation were taken into account and while evaluating the quality of the fuel atomization the outflow of the fuel from the injector were considered. The tests reported here were performed for one value of the air back pressure at the various injection pressures. The fuel doses were changed by modifying the duration of the injection. A significant influence of theses parameters on the values of the operating indexes of the injection and atomization processes has been noted.
APA, Harvard, Vancouver, ISO, and other styles
8

Tang, Yuanzhi, Diming Lou, Chengguan Wang, Piqiang Tan, Zhiyuan Hu, Yunhua Zhang, and Liang Fang. "Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel." Energies 13, no. 23 (November 25, 2020): 6210. http://dx.doi.org/10.3390/en13236210.

Full text
Abstract:
In this paper, the visualization experiments of spray, ignition, and combustion of diesel under variable injection pressure (from 90 to 130 MPa) were studied by using a constant volume vessel and impinging combustion plate system. With the development of the down-sizing of diesel engines, the wall impinging combustion without liquid spray collision will be the research focus in the diesel engine combustion process. The flame natural luminosity in the experiment represents the soot formation of diesel combustion. Besides, the detailed information of diesel spray mixing combustion was obtained by using the CFD (Computational Fluid Dynamics) simulation of alternative fuels in CONVERGE™. The specific conclusions are as follows. The high velocity of the spray under the higher injection pressure could reduce the low-mixing area near the impinging wall by entraining more air. Under higher injection pressure in simulation, the gas diffused more extensively, and more heat was released after combustion. Therefore, a large amount of soot formed in the early stage of combustion and then oxidized in high-temperature regions, which agreed with the conclusions in the experiments. Under the influence of the superposition of image pixels of the flame, the change of soot generation with injection pressure is smaller than the actual value, so the visualization experiment can be used as the basis of combustion prediction.
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Kweonha. "The flame behaviour of liquefied petroleum gas spray impinging on a flat plate in a constant volume combustion chamber." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 5 (May 1, 2005): 655–63. http://dx.doi.org/10.1243/095440705x11031.

Full text
Abstract:
Liquefied petroleum gas (LPG) sprays and diffusion flames are investigated in a constant volume combustion chamber having an impingement plate. The spray and flame images are visualized and compared with diesel and gasoline images over a wide range of ambient pressure. The high-speed digital camera is used to take the flame images. The injection pressure is generated by a Haskel air-driven pump, and the initial chamber pressure is adjusted by the amount of pumping air. The LPG spray and flame photographs are compared with those of gasoline and diesel fuel at the same conditions, and then the spray and flame development behaviour is analysed. The spray photographs show that the dispersion characteristics of LPG spray are sensitive to the ambient pressure. In a low initial chamber pressure LPG fuel in the liquid phase evaporates quickly and does not reach down easily to the impinging plate having a hot coil for ignition. That makes the temperature and equivalence ratio low near the ignition coil, thus making ignition diffcult. On the other hand, in a high initial chamber pressure the spray leaving the nozzle gathers around the ignition site after impinging on the plate, which makes an intense flame near the plate. If applied to small-sized direct injection engines that are not able to avoid spray impinging on a cylinder wall, LPG will have faster and cleaner combustion than diesel or gasoline fuels. However, the chamber geometry should be carefully designed to enable a sufficient amount of vaporized fuel to get to the ignition site
APA, Harvard, Vancouver, ISO, and other styles
10

Pickett, Lyle M., Caroline L. Genzale, Gilles Bruneaux, Louis-Marie Malbec, Laurent Hermant, Caspar Christiansen, and Jesper Schramm. "Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities." SAE International Journal of Engines 3, no. 2 (October 25, 2010): 156–81. http://dx.doi.org/10.4271/2010-01-2106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "High pressure spray combustion"

1

Emre, Oguz. "Modeling of spray polydispersion with two-way turbulent interactions for high pressure direct injection in engines." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0029/document.

Full text
Abstract:
La simulation des écoulements diphasiques rencontrés dans les moteurs à combustion interne (MCI) est de grande importance pour la prédiction de la performance des moteurs et des émissions polluantes. L’injection directe du carburant liquide à l’intérieur de la chambre de combustion génère loin de l’injecteur un brouillard de gouttes polydisperses, communément appelé spray. Du point de vue de la modélisation, l’émergence des méthodes Eulériennes pour la description du spray est considérée prometteuse par la communauté scientifique. De plus, la prise en compte de la distribution en taille des gouttes par les approches Eulériennes, de manière peu coûteuse en temps de calcul, n’est plus considérée comme un verrou depuis le développement de la méthode Eulerian Multi Size Moment (EMSM). Afin d’envisager la simulation de configurations réalistes de MCI, ce travail de thèse propose de modéliser les interactions turbulentes two-way entre le spray polydisperse évaporant et la phase gazeuse environnante par la méthode EMSM. Dans le contexte du formalisme Arbitrary Lagrangian Eulerian (ALE) dédiée au traitement du maillage mobile, les termes sources présents dans le modèle diphasique sont traités séparément des autres contributions. Le système d’équations est fermé à l’aide d’une technique de reconstruction par maximisation d’entropie (ME), originellement introduite pour EMSM. Une nouvelle stratégie de résolution a été développée pour garantir la stabilité numérique aux échelles de temps très rapides introduites par les transferts de masse, quantité de mouvement et énergie, tout en respectant la condition de réalisabilité associée à la préservation de l’espace des moments d’ordre ´élevé. A l’aide des simulations académiques, la stabilité et la précision de la méthode ont été étudiées aussi bien pour des lois d’évaporation constantes que dépendantes du temps. Tous ces développements ont été intégrés dans le code industriel IFP-C3D dédié aux écoulements compressibles et réactifs. Dans le contexte de la simulation en 2-D de l’injection directe, les résultats se sont avérés très encourageants comme en témoignent les comparaisons qualitatives et quantitatives de la méthode Eulerienne à la simulation Lagrangienne de référence des gouttes. De plus, les simulations en 3-D effectuées dans une configuration typique de chambre de combustion et des conditions d’injection réalistes ont donné lieu à des résultats qualitativement très satisfaisants. Afin de prendre en compte la modélisation de la turbulence, une extension moyennée, au sens de Reynolds, des équations du modèle diphasique two-way est dérivée, un soin particulier étant apporté aux fermetures des corrélations turbulentes. La répartition de l’énergie dans le spray ainsi que les interactions turbulentes entre les phases ont été étudiées dans des cas tests homogènes. Ces derniers donnent un aperçu intéressant sur la physique sous-jacente dans les MCI. Cette nouvelle approche RANS diphasique est maintenant prête à être employée pour les simulations d’application de MCI
The ability to simulate two-phase flows is of crucial importance for the prediction of internal combustion engine (ICE) performance and pollutant emissions. The direct injection of the liquid fuel inside the combustion chamber generates a cloud of polydisperse droplets, called spray, far downstream of the injector. From the modeling point of view, the emergence of Eulerian techniques for the spray description is considered promising by the scientific community. Moreover, the bottleneck issue for Eulerian methods of capturing the droplet size distribution with a reasonable computational cost, has been successfully tackled through the development of Eulerian Multi Size Moment (EMSM) method. Towards realistic ICE applications, the present PhD work addresses the modeling of two-way turbulent interactions between the polydisperse spray and its surrounding gas-phase through EMSM method. Following to the moving mesh formalism ArbitraryLagrangian Eulerian (ALE), the source terms arising in the two-phase model have been treated separately from other contributions. The equation system is closed through the maximum entropy (ME) reconstruction technique originally introduced for EMSM. A new resolution strategy is developed in order to guarantee the numerical stability under veryfast time scales related to mass, momentum and energy transfers, while preserving the realizability condition associated to the set of high order moments. From the academic point of view, both the accuracy and the stability have been deeply investigated under both constant and time dependent evaporation laws. All these developments have beenintegrated in the industrial software IFP-C3D dedicated to compressible reactive flows. In the context of 2-D injection simulations, very encouraging quantitative and qualitative results have been obtained as compared to the reference Lagrangian simulation of droplets. Moreover, simulations conducted under a typical 3-D configuration of a combustion chamber and realistic injection conditions have given rise to fruitful achievements. Within the framework of industrial turbulence modeling, a Reynolds averaged (RA) extension of the two-way coupling equations is derived, providing appropriate closures for turbulent correlations. The correct energy partitions inside the spray and turbulent interactions between phases have been demonstrated through homogeneous test-cases. The latter cases gave also some significant insights on underlying physics in ICE. This new RA approach is now ready for ICE application simulations
APA, Harvard, Vancouver, ISO, and other styles
2

Domingo-Alvarez, Patricia. "High-pressure combustion large-eddy simulation for an a priori optical diagnostics validation." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR26.

Full text
Abstract:
Afin de réduire la consommation spécifique et les émissions de CO₂ des moteurs aéronautiques, les industriels cherchent à augmenter la pression maximale dans le cycle thermodynamique de Brayton. Cette augmentation de pression entraîne un fort impact sur la structure de la flamme (épaisseur, vitesse, cinétique chimique) mais également sur les émissions de polluants, tels que les NOx. Les émissions de NOx peuvent être limitées en adoptant des technologies innovantes comme les chambres de combustion low-NOx. De même, la haute pression dans la chambre impacte également les propriétés radiatives des gaz brûlés, qui sont importantes pour les diagnostics optiques utilisés pour caractériser la flamme. Un nouveau système d’injection de type pauvre prémélangé (LP pour Lean-Premixed) pour brûleurs aéronautiques a été étudié expérimentalement au laboratoire CORIA à Rouen avec des diagnostics optiques avancés. Dans le cadre de ces travaux, des simulations aux grandes échelles de ce système ont été réalisées pour un point de fonctionnement de référence à 8.33bar et 669.3K. L’impact des caractéristiques de l’atomisation sur la flamme est évalué par une étude paramétrique. Une analyse du temps d’évaporation caractéristique et de son influence sur la flamme a été effectuée. Cette étude paramétrique montre que la qualité de l’atomisation influence fortement la topologie de la flamme et la distribution du combustible dans la chambre de combustion. Les résultats numériques sont ensuite comparés aux données expérimentales afin d’apporter des précisions sur la topologie de la flamme. De plus, un modèle à deux niveaux capable de simuler la Fluorescence Induite par Laser (LIF) a été développé. Le but de ce modèle est de pouvoir comparer des images brutes obtenues expérimentalement avec les résultats numériques. À cet effet, l’interaction faisceau laser / gaz brûlés est modélisée pour quantifier les phénomènes d’absorption et de “quenching”, qui sont importants pour obtenir des mesures quantitatives à partir du signal de fluorescence. Avec ce modèle, les simulations permettent d’évaluer les propriétés radiatives des gaz brûlés le long du parcours de la nappe laser
To reduce the specific consumption and CO2 emissions of aircraft engines, manufacturers are seeking to increase the maximum pressure in Brayton’s thermodynamic cycle. This pressure increase has a strong impact on the flame structure (thickness, speed, chemical kinetics) but also on pollutant emissions. High pressure leads to an increase in NOx emissions, which can be reduced by the adoption of low-NOx technologies. It also impacts the radiative properties of the burnt gases. These burnt gases are important since they are used in optical diagnostics to characterize the flame. A new Lean-Premixed (LP) injection system for aeronautical burners was experimentally investigated with advanced optical diagnostics at CORIA laboratory in Rouen. This work aims to perform Large-Eddy Simulations of this injector at a reference operating point at 8.33 bar and669.3K. The spray features impact on the flame is assessed by a specific parametric study. An analysis of the characteristic evaporation time and its influence on the flame is carried out. This parametric study shows that the quality of atomization strongly influences the flame topology and fuel distribution in the combustion chamber. The numerical results are then compared with the experimental data. In addition, a two-level model capable of simulating Laser Induced Fluorescence (LIF) has been developed. The purpose of this model is to be able to compare raw images obtained experimentally with numerical results. To this purpose, the interaction between the laser sheet and the burnt gases is modeled to quantify the absorption and quenching phenomena, which are important to obtain quantitative measurements from a fluorescence signal. With this model, simulations are used to evaluate the radiative properties of the burnt gases along the laser sheet path
APA, Harvard, Vancouver, ISO, and other styles
3

Peraza, Ávila Jesús Enrique. "Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/149389.

Full text
Abstract:
[EN] The potential of diesel engines in terms of robustness, efficiency and energy density has made them widely used as power generators and propulsion systems. Specifically, fuel atomization, vaporization and air-fuel mixing, have a fundamental effect on the combustion process, and consequently, a direct impact on pollutant formation, fuel consumption and noise emission. Since the combustion chamber has a limited space respect to the spray penetration, wall impingement is considered to be a common event in direct injection diesel engines, having a relevant influence in the spray evolution and its interaction with both surrounding air and solid walls. This makes of spray-wall interaction an important factor for the combustion process that is still hardly understood. At cold-start conditions, the low in-chamber pressures and temperatures promote the deposition of fuel in the piston wall, which leads to a boost in the formation of unburned hydrocarbons. Additionally, modern design trends such as the increment of rail pressures in injection systems and the progressive reduction of the engine displacement, favor the emergence of spray collision onto the walls. In spite of the evident relevance of the comprehension of this phenomenon and the efforts of engine researchers to reach it, the transient nature of injection process, its small time scales and the complexity of the physical phenomena that take place in the vicinity of the wall, make challenging the direct observation of this spray-wall interaction. Even though computational tools have proven to be priceless in this field of study, the need for reliable experimental data for the development of those predictive models is present. This thesis is aimed to shed light on the fundamental characteristics of spray-wall interaction (SWI) at diesel-like chamber conditions. A flat wall was set at different impingement distances and angles respect to the spray. In this way, two different kinds of experimental investigations on colliding sprays were carried out: A transparent quartz wall was employed into the chamber to, in isolation, analyze the macroscopic characteristics of the spray at both evaporative inert and reactive conditions, which have been observed laterally and through the wall, thanks to the use of a high-pressure and high-temperature vessel with optical accesses. This same test rig was used in the second kind of experiments, where instead of the quartz plate, a stainless steel wall was used to capture the effect of the operating conditions on the heat flux between the wall and the spray during the injection-combustion events and to determine how spray and flame evolution are affected by realistic heat transfer situations. This wall was instrumented to control its initial in-chamber surface temperature and to measure its variation with time by using high-speed thermocouples. Tests at free-jet conditions were also performed in order to provide a solid comparative base for those experiments.
[ES] El potencial de los motores diesel en términos de robustez, eficiencia y la densidad de energía los ha hecho ser ampliamente usados como generadores de energía y sistemas propulsivos. Específicamente, la atomización de combustible, vaporización y mezcla de aire y combustible tienen un efecto fundamental en el proceso de combustión y, en consecuencia, un impacto directo en la formación de emisiones contaminantes, consumo de combustible y generación de ruido. Dado que la cámara de combustión tiene un espacio limitado con respecto la capacidad de penetración del chorro, el impacto de la pared se considera bastante común en motores de inyección directa diésel, que tienen una influencia relevante en la evolución del chorro y su interacción con el aire circundante y las paredes sólidas. Esto hace de interacción chorro-pared, un factor importante para el proceso de combustión que aún es dificilmente comprendido. En condiciones de arranque en frío, las bajas presiones y temperaturas en la cámara promueven la deposición de combustible en la pared del pistón, lo que conduce a un aumento en los niveles de formación de hidrocarburos no quemados. Además, las tendencias modernas de diseño como el incremento de las presiones de rail en los sistemas de inyección y la progresiva reducción en la cilindrada de los motores, favorecen la aparición de colisiones entre chorro y pared. A pesar de la evidente importancia en la comprensión de este fenómeno y los esfuerzos de los investigadores para alcanzarla, la transitoria naturaleza del proceso de inyección, sus pequeñas escalas de temporales y la complejidad de los fenómenos físicos que tienen lugar en las proximidades de la pared, hacen que la observación directa de esta interacción chorro-pared sea un desafío. Aunque las herramientas computacionales han demostrado ser invaluables en este campo de estudio, la necesidad de datos experimentales confiables para el desarrollo de esos modelos predictivos está muy presente. Esta tesis tiene como objetivo arrojar luz sobre las características fundamentales de la interacción chorro-pared (SWI por sus siglas en inglés) en condiciones de cámara similares a las de un motor diesel. Se colocó una pared plana a diferentes distancias de impacto y ángulos con respecto al jet. De esta manera, dos tipos diferentes de investigaciones experimentales sobre chorros en colisión se llevaron a cabo: se empleó una pared de cuarzo transparente en la cámara para, de forma aislada, analizar las características macroscópicas del chorro en condiciones evaporativas inertes y reactivas, que pueden observarse lateralmente y a través de la pared, gracias al uso de una instalación de alta presión y alta temperatura ópticamente accesible. Esta misma instalación se utilizó en el segundo tipo de experimentos en los que se introdujo una pared de acero inoxidable para capturar adicionalmente el efecto de las condiciones de operación en el flujo de calor entre ésta y el chorro durante los eventos de inyección y combustión y para determinar cómo la evolución del chorro y la llama son afectadas por una situación realista de transferencia de calor. Esta pared fue instrumentada para controlar la temperatura inicial de su superficie expuesta a la cámara y medir su variación con el tiempo, utilizando termopares de alta velocidad. Ensayos en condiciones de chorro libre también se realizaron para proporcionar una base comparativa sólida para esos experimentos.
[CA] El potencial dels motors dièsel en termes de robustesa, eficiència i la densitat d'energia els ha fet ser àmpliament usats com a generadors d'energia i sistemes propulsius. Específicament, l'atomització de combustible, vaporització i barreja d'aire i combustible tenen un efecte fonamental en el procés de combustió i, en conseqüència, un impacte directe en la formació d'emissions contaminants, consum de combustible i generació de soroll. Atès que la cambra de combustió té un espai limitat pel que fa la capacitat de penetració de l'raig, l'impacte de la paret es considera bastant comú en motors d'injecció directa dièsel, que tenen una influència rellevant en l'evolució del doll i la seva interacció amb el aire circumdant i les parets sòlides. Això fa d'interacció doll-paret, un factor important per al procés de combustió que encara és difícilment comprès. En condicions d'arrencada en fred, les baixes pressions i temperatures a la cambra promouen la deposició de combustible a la paret del pistó, el que condueix a un augment en els nivells de formació d'hidrocarburs no cremats. A més, les tendències modernes de disseny com l'increment de les pressions de rail en els sistemes d'injecció i la progressiva reducció en la cilindrada dels motors, afavoreixen l'aparició de col·lisions entre el doll i la paret. Tot i l'evident importància en la comprensió d'aquest fenomen i els esforços dels investigadors per aconseguir-la, la transitòria naturalesa de l'procés d'injecció, les seves petites escales de temporals i la complexitat dels fenòmens físics que tenen lloc en les proximitats de la paret , fan que l'observació directa d'aquesta interacció doll-paret siga un desafiament. Tot i que les eines computacionals han demostrat ser invaluables en aquest camp d'estudi, la necessitat de dades experimentals fiables per al desenvolupament d'aquests models predictius està molt present. Aquesta tesi té com a objectiu donar llum sobre les característiques fonamentals de la interacció doll-paret (SWI per les seues sigles en anglès) en condicions de cambra similars a les d'un motor dièsel. Es va col·locar una paret plana a diferents distàncies d'impacte i angles pel que fa al jet. D'aquesta manera, dos tipus diferents d'investigacions experimentals sobre dolls en col·lisió es van dur a terme: es va emprar una paret de quars transparent a la cambra per, de forma aïllada, analitzar les característiques macroscòpiques del doll en condicions evaporació inerts i reactives, que poden observar lateralment i a través de la paret, gràcies a l'ús d'una instal·lació d'alta pressió i alta temperatura òpticament accessible. Aquesta mateixa instal·lació es va utilitzar en el segon tipus d'experiments en els quals es va introduir una paret d'acer inoxidable per capturar addicionalment l'efecte de les condicions d'operació en el flux de calor entre aquesta i el dull durant els esdeveniments d'injecció i combustió i per determinar com l'evolució del doll i la flama són afectades per una situació realista de transferència de calor. Aquesta paret va ser instrumentada per controlar la temperatura inicial de la seua superfície exposada a la càmera i mesurar la seua variació amb el temps, utilitzant termoparells d'alta velocitat. Assajos en condicions de doll lliure també es van realitzar per proporcionar una base comparativa sòlida per a aquests experiments.
Peraza Ávila, JE. (2020). Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149389
TESIS
APA, Harvard, Vancouver, ISO, and other styles
4

Aye, Maung Maung [Verfasser]. "Spray Combustion of Single- and Multi-component Fuels under Engine-like Conditions in a High Pressure Chamber / Maung Maung Aye." Aachen : Shaker, 2015. http://d-nb.info/1070152005/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nilaphai, Ob. "Vaporization and Combustion Processes of Alcohols and Acetone-Butanol-Ethanol (ABE) blended in n-Dodecane for High Pressure-High Temperature Conditions : Application to Compression Ignition Engine." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2020/document.

Full text
Abstract:
La préoccupation de plus en plus importante ces dernières décennies, liée à l’épuisement des ressources pétrolières et au réchauffement climatique par les gaz à effet de serre a accentué l’intérêt du butanol comme carburant alternatif dans le secteur des transports grâce à ses propriétés adaptées pour le moteur à allumage par compression. Cependant, le faible rendement des procédés de production et de séparation empêche encore sa commercialisation en tant que carburant. C’est pourquoi le mélange de fermentation intermédiaire de la production de butanol, Acétone-Butanol-Ethanol(ABE), est de plus en plus considéré comme un carburant alternatif potentiel en raison de ses propriétés similaires au butanol et de ses avantages quant à son cout énergétique pour sa fabrication.Dans ce cadre, ce travail a pour objectif d’étudier l’impact des propriétés de différents mélanges d’ABE et n-dodécane en comparaison avec des mélanges d’alcools (éthanol et butanol) sur le processus de pulvérisation et de combustion et ce,pour différentes proportions en volume allant de 20% à 50%. Pour cela, une nouvelle chambre de combustion appelée"New One Shot Engine ", a été réalisée et utilisée car les conditions haute pression et haute température de "Spray-A" (60bars, 800-900 K et 22,8 kg/m³) définies par le réseau Engine Combustion network (ECN) peuvent être atteintes. Autant les phases liquides et vapeur que de combustion ont été caractérisées grâce à l’utilisation des plusieurs techniques optiques (extinction, Schlieren, chimiluminescence d’OH*) dans des conditions non réactives (Azote pur) et réactives (avec15% d'oxygène). Ces résultats expérimentaux ont non seulement permis d’étudier l’impact en oxygène moléculaire et de fournir une nouvelle base de données fiables, mais aussi d’affirmer la possibilité d’utiliser jusque 20% d’ABE en volume dans des moteurs à allumage par compression, grâce à ses caractéristiques de pulvérisation et de combustion similaires au carburant Diesel conventionnel
The growing concern in recent decades, linked to the depletion of oil resources and global warming by greenhouse gases has increased the interest of butanol as an alternative fuel in the transport sector. However, the low yield of production and separation processes still prevents its commercialization as a fuel. Therefore, the intermediate fermentation mixture of butanol production, Acetone-Butanol-Ethanol (ABE), is increasingly considered as a potential alternative fuel because of its similar properties to butanol and its advantages in terms of the energy and cost in the separation process.The context of this work aims to study the impact of fuel properties on the spray and combustion processes of ABE mixture and alcohol fuels, blended with the diesel surrogate fuel, n-dodecane, in different volume ratio from 20% to 50%. A new combustion chamber called "New One Shot Engine," was designed and developed to reach the high-pressure and high temperatureconditions of "Spray-A" (60 bar, 800-900 K and 22.8 kg/m³) defined by the Engine Combustion Network (ECN).The macroscopic spray and combustion parameters were characterized by using the several optical techniques (extinction,Schlieren, chemiluminescence of OH*) under non-reactive (pure Nitrogen) and reactive (15% of oxygen) conditions. These experimental results not only made it possible to study the molecular oxygen impact and provide a new accurate database,but also to affirm the possibility of using ABE up to 20% by volume in compression-ignition engines, as its spray and combustion characteristics similar to conventional diesel fuel
APA, Harvard, Vancouver, ISO, and other styles
6

Malbois, Pierre. "Analyse expérimentale par diagnostics lasers du mélange kérosène/air et de la combustion swirlée pauvre prémélangée, haute-pression issue d’un injecteur Low-NOx." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR25/document.

Full text
Abstract:
Les motoristes aéronautiques misent sur le développement de systèmes d’injection de carburant innovants pour réduire la consommation de carburant et les émissions de polluants. L’objectif de la thèse est de contribuer à l’étude expérimentale d’un injecteur « Lean Premixed » par le développement de diagnostics lasers couplant des approches basées sur la diffusion de Mie et l’émission fluorescente de traceurs. Les mesures ont été réalisées sur le banc de combustion haute pression HERON. Une approche novatrice avec l’imagerie de fluorescence du kérosène a permis d’obtenir une quantification du mélange kérosène/air. La structure de flamme a été mesurée simultanément par PLIF-OH et des mesures PIV de vitesse ont complété cette analyse. Un développement préliminaire de la PLIF-CO a également été mené. Les nombreuses mesures permettent de fournir une analyse détaillée des interactions flamme/spray/aérodynamique lors d’une combustion swirlée stabilisée kérosène/air à haute pression
Aeronautical engine manufacturers are banking on the development of innovative fuel injection systems to reduce fuel consumption and pollutant emissions. The aim of the thesis is to contribute to the experimental investigation of a "Lean Premixed" injector by developing laser diagnostics coupling approaches based on Mie scattering and fluorescent emission of tracers. Measurements are performed at high pressure on the HERON combustion test bench. An innovative approach with fluorescence imaging of kerosene has resulted in the quantification of the kerosene/air mixture. The flame structure was analyzed simultaneously by OH-PLIF and velocity PIV measurements were performed to complete this analysis. A preliminary development of CO-PLIF was also conducted. The numerous measurements provided a detailed analysis of the mechanisms of flame/spray/aerodynamic interactions during a swirl-stabilized kerosene/air combustion at high pressure
APA, Harvard, Vancouver, ISO, and other styles
7

Salcedo, Saulo Alfredo Gómez. "CFD analysis in spray combustion using a pressure swirl injector." Instituto Tecnológico de Aeronáutica, 2015. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3292.

Full text
Abstract:
The object of this work is to apply CFD simulation in the description of the spray burning. As a case study, a pressure swirl injector, characterized and tested by NIST, has been chosen, which atomize liquid kerosene in an atmosphere of gaseous oxygen. The chamber dimensions allow a complete evaporation, avoiding the impact of drops on the circular wall. Swirl-axisymmetric domain and steady state permit to include combustion, a complex process, without requiring of high computational resources. Continuous phase is treated with an Eulerian reference, while fuel drops are tracked following the Lagrangian formulation. Chemical kinetics is reduced to the concept of mixture fraction. This assumption avoids the solution of too many transport equations for all involved species. In the first simulation, the inlet boundary of the continuous phase is obtained from the numerical solution of a fully developed flow transporting the oxidant gas. Then, four cases are proposed and solved, changing the turbulence intensity and swirl velocity on the inlet boundary, each parameter with two different values. Finally, results for the axial velocity, streamlines, drops trajectories, temperature, distribution and total production of selected species are analyzed and compared with other related studies.
APA, Harvard, Vancouver, ISO, and other styles
8

Conley, Clark Alexander. "High-pressure GH₂/GO₂ combustion dynamics." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Verdier, Antoine. "Experimental study of dilute spray combustion." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR27/document.

Full text
Abstract:
La combustion diphasique implique de nombreux phénomènes physiques complexes, comprenant l'atomisation, la dispersion, l'évaporation et la combustion. Bien que la simulation numérique soit un outil performant pour aborder ces différentes interactions entre les phases liquides et gazeuses, la méthode doit être validée par des études expérimentales fiables. Par conséquent, des données expérimentales précises sur la structure de la flamme et sur les propriétés de la phase liquide et gazeuse le long des étapes d'évaporation et de combustion sont nécessaires. La complexité des configurations aéronautiques réelles implique d'étudier l'effet des propriétés locales sur la dynamique des flammes pour une configuration canonique. Ce travail, réalisé dans le cadre du projet ANR TIMBER, a pour objectif d'améliorer la compréhension de la combustion en flux diphasique, ainsi que de produire une base de données efficace et originale pour la validation des modèles utilisés dans les LES
Liquid fuels are the primary energy source in a wide range of applications including industrial and residential furnaces, internal combustion engines and propulsion systems. Pollutant emission reduction is currently one of the major constraints for the design of the next generation combustion chamber. Spray combustion involves many complex physical phenomena including atomization, dispersion, evaporation and combustion, which generally take place simultaneously or within very small regions in the combustion chambers. Although numerical simulation is a valuable tool to tackle these different interactions between liquid and gas phases, the method needs to be validated through reliable experimental studies. Therefore, accurate experimental data on flame structure and on liquid and gas properties along the evaporation and combustion steps are needed and are still challenging. A joint effort between numerical and experimental teams is necessary to meet tomorrow's energy challenges and opportunities. The complexity of the real aeronautical configurations implies to study the effect of local properties in flame dynamics on a canonical configuration, which presents the essential feature of very well defined boundary conditions. This work, carried out within the framework of the ANR TIMBER project, aims to improve the understanding of two-phase flow combustion, as well as to produce an efficient and original database for the validation of the models used in LES
APA, Harvard, Vancouver, ISO, and other styles
10

Demosthenous, Alexis. "Soot formation and oxidation in a high-pressure spray flame." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "High pressure spray combustion"

1

Kunkulagunta, K. R. Spray, combustion and emission studies in high speed DI diesel engines. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jankowsky, Robert S. Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jankovsky, Robert S. High-area-ratio rocket nozzle at high combustion chamber pressure--experimental and analytical validation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masters, Philip A. High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion. Cleveland, Ohio: Lewis Research Center, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kazi, Rafiq Akhtar. A high pressure kinetic study of the in-situ combustion process for oil recovery. Salford: University of Salford, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kinzler, D. D. Experimental study of high levels of SOb2 sremoval in atmospheric-pressure fluidized-bed combustors. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kinzler, D. D. Experimental study of high levels of SO2 removal in atmospheric-pressure fluidized-bed combustors. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kinzler, D. D. Experimental study of high levels of SO removal in atmospheric-pressure fluidized-bed combustors. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carter, Campbell D. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames. West Lafayette, Ind: Purdue University, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carter, Campbell D. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames. West Lafayette, Ind: Purdue University, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "High pressure spray combustion"

1

Nakayama, M. "Development of a Time-Resolved Particle Sizer and Spray Sizing in High Back-Pressure Injection." In Laser Diagnostics and Modeling of Combustion, 63–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-45635-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rokni, M. Reza, Steven R. Nutt, Christian A. Widener, Grant A. Crawford, and Victor K. Champagne. "Structure–Properties Relations in High-Pressure Cold-Sprayed Deposits." In Cold-Spray Coatings, 143–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67183-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hanabusa, M., T. Nomura, S. Iguchi, S. Furuno, and T. Inoue. "CARS Thermometry For High Pressure Gases." In Laser Diagnostics and Modeling of Combustion, 111–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-45635-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Renz, U. "Investigation of a High Pressure Oxy-Coal Process." In Cleaner Combustion and Sustainable World, 111–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LeBlanc, Simon, Xiao Yu, and Ming Zheng. "High Pressure DME Spray for Compression Ignition Engines." In Springer Proceedings in Energy, 49–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38804-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Modest, Michael F., and Daniel C. Haworth. "Radiative Heat Transfer in High-Pressure Combustion Systems." In Radiative Heat Transfer in Turbulent Combustion Systems, 137–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27291-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Pawan J., J. Munoz, W. L. Chen, and William R. Kratochvil. "Ultra-High Pressure Waterjet Removal of Thermal Spray Coatings." In Jet Cutting Technology, 461–80. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2678-6_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yue, Zongyu, and Rolf D. Reitz. "Simulation of the High-Pressure Combustion Process in Diesel Engines." In High-Pressure Flows for Propulsion Applications, 731–68. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0731.0768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sadiki, Amsini, W. Ahmadi, and Mouldi Chrigui. "Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part II: Influence of High Combustion Temperature on Spray Droplet Evaporation." In ERCOFTAC Series, 111–32. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Forliti, D. J., I. A. Leyva, D. G. Talley, J. I. Rodriguez, S. Teshome, J. L. Wegener, M. Roa, and A. R. Karagozian. "Forced and Unforced Shear Coaxial Mixing and Combustion at Subcritical and Supercritical Pressures." In High-Pressure Flows for Propulsion Applications, 233–79. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0233.0280.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "High pressure spray combustion"

1

Rotondi, Rossella, and Cinzio Arrighetti. "Modeling High-Pressure Spray Impingement." In ASME 2003 Internal Combustion Engine and Rail Transportation Divisions Fall Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/icef2003-0739.

Full text
Abstract:
Numerical investigation of the spray-wall interaction was carried out. Wall interaction models that predict the post-impingement state of drops hitting a wall, under internal combustion engines conditions, are still missing. In this paper different existing models were implemented in a modified version of the KIVA3V code. Simulations concerning high pressure sprays in a chamber at different ambient pressures were made. Numerical radial penetrations and spray pattern were compared to experimental data.
APA, Harvard, Vancouver, ISO, and other styles
2

De Vita, A., L. Di Angelo, L. Allocca, and S. Alfuso. "Evolution of a high-pressure spray from a swirled gasoline injector." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Zhihao, Xiucheng Zhu, Le Zhao, Jeffrey Naber, and Seong-Young Lee. "Spray-Wall Dynamics of High-Pressure Impinging Combustion." In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-01-0067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fimml, Wolfgang, Christian Fuchs, Thomas Jauk, and Andreas Wimmer. "Optical Analysis and Simulation of Diesel Sprays in a High Pressure and High Temperature Spray Box." In ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1376.

Full text
Abstract:
The characterization of diesel sprays for the simulation-based optimization of injection strategies and combustion chamber geometries is of particular importance to reach future targets concerning performance, fuel consumption and emissions. The prediction quality of this simulation process depends largely upon the adequate calibration of the spray models used. This paper aims to present the experimental setup of a spray box, the applied optical visualization techniques and the results. Furthermore, it will show the adjustment and the validation of the simulation models based on the experimental analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Allen, M., K. McManus, and D. Sonnenfroh. "PLIF imaging measurements in high-pressure spray flame combustion." In 30th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gavaises, M., C. Arcoumanis, A. Theodorakakos, and G. Bergeles. "Structure of high-pressure diesel sprays." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Tsung-Cheng, Joong-Sub Han, Xingbin Xie, Ming-Chia Lai, Naeim A. Henein, Ernest Schwarz, and Walter Bryzik. "Direct Visualization of High Pressure Diesel Spray and Engine Combustion." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-3496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Giorgi, Maria Grazia, Aldebara Sciolti, and Antonio Ficarella. "Spray and Combustion Modeling in High Pressure Cryogenic Jet Flames." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69544.

Full text
Abstract:
The aim of the present work is the investigation of the combustion phenomenon in liquid-propellant rocket engines. The combustion of liquid oxygen and gaseous methane in a shear coaxial injector under supercritical pressure was analyzed. To realize an efficient numerical description of the phenomena, it is important to treat the LOx jet in a manner which takes into account its real behavior. In the present work different kinetics, combustion models and thermodynamics approaches were used in association with the description of the jet as a discrete phase. For all the approaches used, a comparison with experimental data from literature was performed.
APA, Harvard, Vancouver, ISO, and other styles
9

James, Kemar C., Jin Wang, Zackery B. Morris, Michael C. Maynard, and Brian T. Fisher. "Development of a High-Pressure, High-Temperature, Optically Accessible Continuous-Flow Vessel for Fuel-Injection Experiments." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19102.

Full text
Abstract:
The focus of this work was to develop a continuous-flow vessel with extensive optical access for characterization of engine-relevant fuel-injection and spray processes. The spray chamber was designed for non-reacting experiments at pressures up to 1380 kPa (200 psi) and temperatures up to 200°C. Continuous flow of inert “sweep gas” enables acquisition of large statistical data samples and thus potentially enables characterization of stochastic spray processes. A custom flange was designed to hold a common-rail diesel injector, with significant flexibility to accommodate other injectors and injector types in the future. This flexibility, combined with the continuous flow through the chamber, may enable studies of gas-turbine direct-injection spray processes in the future. Overall, the user can control and vary: injection duration, injection pressure, sweep-gas temperature, sweep-gas pressure, and sweep-gas flow rate. The user also can control frequency of replicate injections. There are four flat windows installed orthogonally on the vessel for optical access. Optical data, at present, include global spray properties such as liquid-phase fuel penetration and cone angle. These measurements are made using a high-speed spray-visualization system (up to 100 kHz) consisting of a fast-pulsed LED (light emitting diode) source and a high-speed camera. Experimental control and data acquisition have been set up and synchronized using custom LabVIEW programs. The culmination of this development effort was an initial demonstration experiment to capture high-speed spray-visualization movies of n-heptane injections to determine liquid-phase fuel penetration length (i.e., liquid length) and spray cone angle. In this initial experiment, fuel-injection pressure was ∼120 MPa (1200 bar) and the injection command-pulse duration was 800 μs. At room conditions, liquid length and nominal spray cone angle were ∼170 mm and ∼14.5°, respectively. In contrast, with air flow in the chamber at 100 psi and 100°C, liquid length was considerably shorter at ∼92 mm and spray cone angle was wider at ∼16.5°. Future experiments will include the continuation of these measurements for a wider range of conditions and fuels, extension of high-speed imaging to vapor-phase fuel penetration using schlieren imaging techniques, and detailed characterization of spray properties near the injector nozzle and near the liquid length.
APA, Harvard, Vancouver, ISO, and other styles
10

Shahangian, Navid, Damon Honnery, and Jamil Ghojel. "Homogenisation of High Pressure Diesel Fuel Spray Combustion Using Porous Ceramic Media." In ASME 2012 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icef2012-92143.

Full text
Abstract:
Interest is growing in the benefits of homogeneous charge compression ignition engines. In this paper we investigate a novel approach to the development of a homogenous charge like environment through the use of porous media. The primary purpose of the media is to enhance the spread of the high pressure fuel spray. In this paper we show through high speed visualizations of both cold and hot spray events, how porous media interactions can give rise to greater fuel air mixing and what role system pressure plays in further enhancing this process.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "High pressure spray combustion"

1

Skeen, Scott A., Julien Luc Manin, and Lyle M. Pickett. Advanced Diagnostics for High Pressure Spray Combustion. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1149303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

T. E. Wierman. System Study: High-Pressure Core Spray 1998–2012. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1129949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schroeder, John Alton. System Study: High-Pressure Core Spray 1998-2014. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1261235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schroeder, John Alton. System Study: High-Pressure Core Spray 1998–2013. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1261717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Zhegang, Kellie J. Kvarfordt, John A. Schroeder, and Thomas E. Wierman. System Study: High-Pressure Core Spray 1998–2018. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1631743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chris Guenther. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/828936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chris Guenther and Bill Rogers. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/833211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stefano Orsino. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/822037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chris Guenther, Ph D. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/814716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rutland, Christopher J. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/951592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography