Academic literature on the topic 'High Resolution Scanning Electron Microscopy (HRSEM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High Resolution Scanning Electron Microscopy (HRSEM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High Resolution Scanning Electron Microscopy (HRSEM)"

1

Apkarian, Robert P. "Comments on Cryo High Resolution Scanning Electron Microscopy." Microscopy Today 12, no. 1 (2004): 45. http://dx.doi.org/10.1017/s1551929500051841.

Full text
Abstract:
Stephen Carmichael wrote about Cryoelectron Tomography in the May 2003 issue of Microscopy Today. Citing new preparation methods, small cells can be vitrified, observed frozen in the TEM and a series of digital images captured while the specimen is being rotated around the axis perpendicular to the electron beam producing a 3-D tomogram. Gina Sosinski and Maryann Martone wrote about imaging big and messy biological structures using cryo-electron Tomography in the July issue of Microscopy Today. Cryo-HRSEM now also seeks to provide 3-D information approaching the molecular level from frozen hydrated cell and molecular systems. Vitrification procedures for small specimens such as platelets and biomolecules on grids are accomplished by plunge freezing in liquefied etiiane as is done with cryo-TEM procedures. Bulk specimens such as organic hydrogels and tissues are routinely high pressure frozen (HPF) in 3mm gold planchets. Employing an in-lens cryostage, identical to those used in cryo-TEM, cryo-HRSEM provides 3-D high-resolution images because secondary electrons are efficiently collected above the lens in a single scan thus minimizing specimen irradiation.
APA, Harvard, Vancouver, ISO, and other styles
2

Vezie, Deborah L. "High-resolution scanning electron microscopy of carbon fiber." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 704–5. http://dx.doi.org/10.1017/s0424820100155499.

Full text
Abstract:
As part of an extensive study of polyacrylonitrile (PAN) and mesophase pitch-based carbon fibers, high resolution scanning electron microscopy (HRSEM) is shown to provide additional insight into understanding and modelling microstructural origins of mechanical properties of carbon fiber. Although carbon fiber has been studied extensively, no sufficiently clear relationship between structure and mechanical properties such as elastic modulus and compressive strength has yet been developed from quantitative TEM and WAXS investigations.In this study, HRSEM data of selected carbon fibers is used to illustrate the power of HRSEM to elucidate structural differences likely accounting for changes in mechanical properties not sensitively probed either by TEM or WAXS. The three-dimensional nature of SEM imaging with accompanying high resolution permits a clearer visualization and more detailed examination of regional structures within carbon fiber over two-dimensional TEM and globally averaged WAXS data.The design of the high resolution, field emission SEM permits low voltage imaging of poorly conducting samples with resolution an order of magnitude greater than a conventional tungsten hairpin filament SEM under the same operating voltage and sample preparation conditions. Although carbon fiber is a relatively conductive material, charging effects can be seen in uncoated PAN fibers above 3.0 keV in a conventional SEM. Lower accelerating voltages are necessary for uncoated imaging of these fibers, but become impractical due to degradation of conventional SEM performance at these voltages. Uncoated sample imaging is preferred to prevent conventional evaporation or sputter coating techniques from obscuring or altering the sample surface, although charging effects may then be a problem. The high resolution, field emission SEM solves these competing voltage/ charging/ resolution issues for poorly conducting materials with the very nature of its design; the high brightness of the electron gun at low voltage coupled with the “in lens” sample placement and above the objective lens detector dramatically improve the resolution of these instruments, especially at low voltage.
APA, Harvard, Vancouver, ISO, and other styles
3

Cosandey, F. "High Spatial Resolution EBSD Study of Nanosized Epitaxial Particles." Microscopy and Microanalysis 3, S2 (1997): 559–60. http://dx.doi.org/10.1017/s1431927600009685.

Full text
Abstract:
Traditionally, the structure and orientation relationship of individual catalyst particles on various oxide substrates have been studied by transmission electron microscopy. However, the combination of high resolution scanning electron microscopes (HRSEM) equipped with Schottky field emission sources with CCD cameras for recording electron backscatter diffraction (EBSD) paterns, it is now possible to obtain both morpholgy and orientation of individual particles with high spatial resolution. In this paper, we present results on the application of combined EBSD with HRSEM to determine the epitaxial orientation relationship of 80 nm Au particles on TiO2 (110). An evaluation of the spatial resolution limit of EBSD using Monte Carlo simulation of backscattered electron trajectories is also presented.The TiO2 (110) single crystal surfaces used in this study were prepared in UHV using surface science tools followed by in-situ metallization. After deposition of 15 nm Au at 300K followed by annealing at 800K, the samples were transferred in air to the Field Emission Scanning Electron microscope (LEO 982 Gemini) for high resolution imaging.
APA, Harvard, Vancouver, ISO, and other styles
4

Cosandey, F., L. Zhang, and T. E. Madey. "High Resolution Fesem Study of Au Particle Growth on TiO2." Microscopy and Microanalysis 3, S2 (1997): 405–6. http://dx.doi.org/10.1017/s1431927600008916.

Full text
Abstract:
Transition metals supported on oxides have important catalytic properties and are also used in chemical gas sensors for increasing sensitivity and selectivity. In order to understand growth and reactivity in the Au/TiO2 system, we have performed surface studies on a model system consisting of ultrathin, discontinuous Au films on TiO2 (110) single crystals. In this paper we are presenting results obtained by high resolution scanning electron microscopy (HRSEM) on the effects of substrate temperature and average Au thickness on particle size, density and coverage.The TiO2 (110) single crystal surfaces used in this study were prepared in UHV using surface science tools followed by in-situ Au deposition for different substrate temperatures and for various film thicknesses. After deposition, the samples were transferred in air to the Field Emission Scanning Electron microscope (LEO 982 Gemini) for high resolution imaging.Typical high resolution scanning electron microscopy (HRSEM) images of Au films deposited at 300 K are shown in Fig. 1 for two film thicknesses of 0.22 and 1.0 nm.
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Ya, Geoffrey Letchworth, and John White. "Progress in high-resolution CRYO-SEM imaging of viral particles." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 818–19. http://dx.doi.org/10.1017/s0424820100166555.

Full text
Abstract:
Low-temperature high-resolution scanning electron microscopy (cryo-HRSEM) has been successfully utilized to image biological macromolecular complexes at nanometer resolution. Recently, imaging of individual viral particles such as reovirus using cryo-HRSEM or simian virus (SIV) using HRSEM, HV-STEM and AFM have been reported. Although conventional electron microscopy (e.g., negative staining, replica, embedding and section), or cryo-TEM technique are widely used in studying of the architectures of viral particles, scanning electron microscopy presents two major advantages. First, secondary electron signal of SEM represents mostly surface topographic features. The topographic details of a biological assembly can be viewed directly and will not be obscured by signals from the opposite surface or from internal structures. Second, SEM may produce high contrast and signal-to-noise ratio images. As a result of this important feature, it is capable of visualizing not only individual virus particles, but also asymmetric or flexible structures. The 2-3 nm resolution obtained using high resolution cryo-SEM made it possible to provide useful surface structural information of macromolecule complexes within cells and tissues. In this study, cryo-HRSEM is utilized to visualize the distribution of glycoproteins of a herpesvirus.
APA, Harvard, Vancouver, ISO, and other styles
6

Lea, P. J., and M. J. Hollenberg. "High-resolution scanning electron microscopy (HRSEM) of mitochondria from various rat tissues." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 14–15. http://dx.doi.org/10.1017/s0424820100102158.

Full text
Abstract:
Our current understanding of mitochondrial ultrastructure has been derived primarily from thin sections using transmission electron microscopy (TEM). This information has been extrapolated into three dimensions by artist's impressions (1) or serial sectioning techniques in combination with computer processing (2). The resolution of serial reconstruction methods is limited by section thickness whereas artist's impressions have obvious disadvantages.In contrast, the new techniques of HRSEM used in this study (3) offer the opportunity to view simultaneously both the internal and external structure of mitochondria directly in three dimensions and in detail.The tridimensional ultrastructure of mitochondria from rat hepatocytes, retinal (retinal pigment epithelium), renal (proximal convoluted tubule) and adrenal cortex cells were studied by HRSEM. The specimens were prepared by aldehyde-osmium fixation in combination with freeze cleavage followed by partial extraction of cytosol with a weak solution of osmium tetroxide (4). The specimens were examined with a Hitachi S-570 scanning electron microscope, resolution better than 30 nm, where the secondary electron detector is located in the column directly above the specimen inserted within the objective lens.
APA, Harvard, Vancouver, ISO, and other styles
7

Bentley, J., N. D. Evans, and E. A. Kenik. "Measurement of Scanning Electron Microscope resolution." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 1044–45. http://dx.doi.org/10.1017/s0424820100172954.

Full text
Abstract:
The resolution performance of a scanning electron microscope (SEM) is a primary specification of the instrument. For a high-resolution SEM (HRSEM) equipped with a field emission gun (FEG), image resolutions of less than 2 nm are commonly claimed. Generally, both manufacturers and customers identify image resolution as the single most important performance criterion. It is traditionally determined with specimens such as gold islands on bulk carbon supports, where the minimum apparent separation of two islands is claimed as the resolution. This procedure is highly subjective since the spacings are not known independently. Dodson and Joy have pointed out the paradox implicit in this approach-that “the resolution of a given instrument can be verified only after a better instrument is available to characterize the structure spacing.” By analogy to the now standard approach for high-resolution transmission electron microscopes (TEMs), Dodson and Joy investigated the use of Fourier Transforms (FT) of high-resolution SEM images for measuring resolution.
APA, Harvard, Vancouver, ISO, and other styles
8

Apkarian, Robert P. "Introduction: High Resolution Cryo-SEM in the Biological Sciences." Microscopy and Microanalysis 9, no. 4 (2003): 272. http://dx.doi.org/10.1017/s143192760303054x.

Full text
Abstract:
What is cryogenic high resolution (in-lens) scanning electron microscopy (HRSEM), and do I need it? Structural cell biologists and bioorganic chemists will find this newly developed imaging mode to be an accurate and useful research tool for molecular level investigations in the hydrated state.
APA, Harvard, Vancouver, ISO, and other styles
9

Simmons, S. R., S. J. Eppell, R. E. Marchant, and R. M. Albrecht. "Correlative atomic-force microscopy and high-resolution scanning electron microscopy of proteins attached to platelet surfaces." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 230–31. http://dx.doi.org/10.1017/s0424820100146990.

Full text
Abstract:
The atomic force microscope (AFM) has provided images at submolecular or atomic scale resolution of biological macromolecules attached to surfaces such as mica, graphite, or synthetic phospholipid membranes. Because the AFM can be operated with the sample in air, vacuum, or immersed in a liquid such as a biological buffer, it has the potential for high resolution imaging of the structure and organization of macromolecules on surfaces of cells in the hydrated or even living state. Realization of this potential would allow observation of molecular processes at the cell surface without the necessity for preparation of the sample for electron microscopy. To date, however, the AFM has yielded images of cell surfaces only at relatively low magnifications, and has not provided the atomic resolution achieved on hard, crystalline surfaces.Previously we have utilized correlative video-enhanced light microscopy, high voltage transmission electron microscopy, and low voltage, high resolution scanning electron microscopy (HRSEM)
APA, Harvard, Vancouver, ISO, and other styles
10

Sutrisno, H., E. D. Siswani, and K. S. Budiasih. "The effect of sintering temperatures of TiO2(B)-nanotubes on its microstructure." Science of Sintering 50, no. 3 (2018): 291–98. http://dx.doi.org/10.2298/sos1803291s.

Full text
Abstract:
Titanium dioxide (TiO2)-nanotubes were prepared by a simple technique reflux. The morphologies and microstructures of nanotubes were characterized by high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscopy (TEM), powder X-ray diffraction (XRD,) energy dispersive X-ray spectroscopy (EDS) and surface area analyzer. The microstructures of TiO2 phases obtained from the sintering process of TiO2-nanotubes for 1 hour at various temperatures from 100 to 1000?C at intervals of 50?C were investigated from the XRD diffractograms. The analyses of morphologies and microstructures from HRSEM and HRTEM images describe the sample as nanotubes. The nanotube is single phase exhibiting TiO2(B) structure. The XRD patterns show that TiO2(B)-nanotubes transform into anatase phase and then become rutile due to increasing sintering temperatures.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography