Academic literature on the topic 'High spatial and spectral remote sensing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High spatial and spectral remote sensing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High spatial and spectral remote sensing"

1

Rocchini, Duccio. "Ecological Remote Sensing: A Challenging Section on Ecological Theory and Remote Sensing." Remote Sensing 13, no. 5 (2021): 848. http://dx.doi.org/10.3390/rs13050848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Yanling, Cong Wei, Ruyan Zhou, Zhonghua Hong, Yun Zhang, and Shuhu Yang. "Combining 3D-CNN and Squeeze-and-Excitation Networks for Remote Sensing Sea Ice Image Classification." Mathematical Problems in Engineering 2020 (April 7, 2020): 1–15. http://dx.doi.org/10.1155/2020/8065396.

Full text
Abstract:
Sea ice is one of the most prominent marine disasters in high latitudes. Remote sensing technology provides an effective means for sea ice detection. Remote sensing sea ice images contain rich spectral and spatial information. However, most traditional methods only focus on spectral information or spatial information, and do not excavate the feature of spectral and spatial simultaneously in remote sensing sea ice images classification. At the same time, the complex correlation characteristics among spectra and small sample problem in sea ice classification also limit the improvement of sea ice classification accuracy. For this issue, this paper proposes a new remote sensing sea ice image classification method based on squeeze-and-excitation (SE) network, convolutional neural network (CNN), and support vector machines (SVMs). The proposed method designs 3D-CNN deep network so as to fully exploit the spatial-spectrum features of remote sensing sea ice images and integrates SE-Block into 3D-CNN in-depth network in order to distinguish the contributions of different spectra to sea ice classification. According to the different contributions of spectral features, the weight of each spectral feature is optimized by fusing SE-Block in order to further enhance the sample quality. Finally, information-rich and representative samples are chosen by combining the idea of active learning and input into SVM classifier, and this achieves superior classification accuracy of remote sensing sea ice images with small samples. In order to verify the effectiveness of the proposed method, we conducted experiments on three different data from Baffin Bay, Bohai Bay, and Liaodong Bay. The experimental results show that compared with other classical classification methods, the proposed method comprehensively considers the correlation among spectral features and the small samples problems and deeply excavates the spatial-spectrum characteristics of sea ice and achieves better classification performance, which can be effectively applied to remote sensing sea ice image classification.
APA, Harvard, Vancouver, ISO, and other styles
3

Wei, Lifei, Ming Yu, Yajing Liang, et al. "Precise Crop Classification Using Spectral-Spatial-Location Fusion Based on Conditional Random Fields for UAV-Borne Hyperspectral Remote Sensing Imagery." Remote Sensing 11, no. 17 (2019): 2011. http://dx.doi.org/10.3390/rs11172011.

Full text
Abstract:
The precise classification of crop types is an important basis of agricultural monitoring and crop protection. With the rapid development of unmanned aerial vehicle (UAV) technology, UAV-borne hyperspectral remote sensing imagery with high spatial resolution has become the ideal data source for the precise classification of crops. For precise classification of crops with a wide variety of classes and varied spectra, the traditional spectral-based classification method has difficulty in mining large-scale spatial information and maintaining the detailed features of the classes. Therefore, a precise crop classification method using spectral-spatial-location fusion based on conditional random fields (SSLF-CRF) for UAV-borne hyperspectral remote sensing imagery is proposed in this paper. The proposed method integrates the spectral information, the spatial context, the spatial features, and the spatial location information in the conditional random field model by the probabilistic potentials, providing complementary information for the crop discrimination from different perspectives. The experimental results obtained with two UAV-borne high spatial resolution hyperspectral images confirm that the proposed method can solve the problems of large-scale spatial information modeling and spectral variability, improving the classification accuracy for each crop type. This method has important significance for the precise classification of crops in hyperspectral remote sensing imagery.
APA, Harvard, Vancouver, ISO, and other styles
4

Duan, Meimei, and Lijuan Duan. "High Spatial Resolution Remote Sensing Data Classification Method Based on Spectrum Sharing." Scientific Programming 2021 (December 20, 2021): 1–12. http://dx.doi.org/10.1155/2021/4356957.

Full text
Abstract:
Existing remote sensing data classification methods cannot achieve the sharing of remote sensing image spectrum, leading to poor fusion and classification of remote sensing data. Therefore, a high spatial resolution remote sensing data classification method based on spectrum sharing is proposed. A page frame recovery algorithm (PFRA) is introduced to allocate the wireless spectrum resources in low-frequency band, and a dynamic spectrum sharing mechanism is designed between the primary and secondary users of remote sensing images. Based on this, D-S evidence theory is used to fuse high spatial resolution remote sensing data and correct the pixel brightness of the fused multispectral image. The initial data are normalized, the feature of spectral image is extracted, the convolution neural network classification model is constructed, and the remote sensing image is segmented. Experimental results show that the proposed method takes shorter time and has higher accuracy for high spatial resolution image segmentation. High spatial resolution remote sensing data classification is more efficient, and the accuracy of data classification and remote sensing image fusion are more ideal.
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Mingyuan, Lifu Zhang, Xuejian Sun, Yi Cen, and Xiaoyang Zhao. "A Fast Three-Dimensional Convolutional Neural Network-Based Spatiotemporal Fusion Method (STF3DCNN) Using a Spatial-Temporal-Spectral Dataset." Remote Sensing 12, no. 23 (2020): 3888. http://dx.doi.org/10.3390/rs12233888.

Full text
Abstract:
With the growing development of remote sensors, huge volumes of remote sensing data are being utilized in related applications, bringing new challenges to the efficiency and capability of processing huge datasets. Spatiotemporal remote sensing data fusion can restore high spatial and high temporal resolution remote sensing data from multiple remote sensing datasets. However, the current methods require long computing times and are of low efficiency, especially the newly proposed deep learning-based methods. Here, we propose a fast three-dimensional convolutional neural network-based spatiotemporal fusion method (STF3DCNN) using a spatial-temporal-spectral dataset. This method is able to fuse low-spatial high-temporal resolution data (HTLS) and high-spatial low-temporal resolution data (HSLT) in a four-dimensional spatial-temporal-spectral dataset with increasing efficiency, while simultaneously ensuring accuracy. The method was tested using three datasets, and discussions of the network parameters were conducted. In addition, this method was compared with commonly used spatiotemporal fusion methods to verify our conclusion.
APA, Harvard, Vancouver, ISO, and other styles
6

Imanian, A., M. H. Tangestani, and A. Asadi. "INVESTIGATION OF SPECTRAL CHARACTERISTICS OF CARBONATE ROCKS – A CASE STUDY ON POSHT MOLEH MOUNT IN IRAN." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W18 (October 18, 2019): 553–57. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-553-2019.

Full text
Abstract:
Abstract. Recent developments in the image processing approaches and the availability of multi and/or hyper spectral remote sensing data with high spectral, spatial and temporal resolutions have made remote sensing technique of great interest in investigations of geological sciences. One of the biggest advantage of the application of remote sensing in geology is recognizing the type of unknown rocks and minerals. In this study, an investigation on spectral features of carbonate rocks (i.e. calcite, dolomite, and dolomitized calcite) were done in terms of main absorptions, the reasons of those absorptions and comparison of these absorption with Johns Hopkins University (JHU) spectral library and laboratory spectra of Analytical Spectral Devices (ASD) instrument. For this purpose, we used the VNIR and SWIR bands of ASTER and OLI datasets. Finally, we applied the Spectral Analyst Algorithm in order to comparison between the obtained spectra from ASTER dataset and carbonate spectra of JHU spectral library.
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Qingsong, Xin Yuan, Chaojun Ouyang, and Yue Zeng. "Attention-Based Pyramid Network for Segmentation and Classification of High-Resolution and Hyperspectral Remote Sensing Images." Remote Sensing 12, no. 21 (2020): 3501. http://dx.doi.org/10.3390/rs12213501.

Full text
Abstract:
Unlike conventional natural (RGB) images, the inherent large scale and complex structures of remote sensing images pose major challenges such as spatial object distribution diversity and spectral information extraction when existing models are directly applied for image classification. In this study, we develop an attention-based pyramid network for segmentation and classification of remote sensing datasets. Attention mechanisms are used to develop the following modules: (i) a novel and robust attention-based multi-scale fusion method effectively fuses useful spatial or spectral information at different and same scales; (ii) a region pyramid attention mechanism using region-based attention addresses the target geometric size diversity in large-scale remote sensing images; and (iii) cross-scale attention in our adaptive atrous spatial pyramid pooling network adapts to varied contents in a feature-embedded space. Different forms of feature fusion pyramid frameworks are established by combining these attention-based modules. First, a novel segmentation framework, called the heavy-weight spatial feature fusion pyramid network (FFPNet), is proposed to address the spatial problem of high-resolution remote sensing images. Second, an end-to-end spatial-spectral FFPNet is presented for classifying hyperspectral images. Experiments conducted on ISPRS Vaihingen and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy achieved by the proposed heavy-weight spatial FFPNet. Furthermore, experiments on the Indian Pines and the University of Pavia hyperspectral datasets indicate that the proposed spatial-spectral FFPNet outperforms the current state-of-the-art methods in hyperspectral image classification.
APA, Harvard, Vancouver, ISO, and other styles
8

NanLan, Wang, and Zeng Xiaoyong. "Hyperspectral Data Classification Algorithm considering Spatial Texture Features." Mobile Information Systems 2022 (March 22, 2022): 1–11. http://dx.doi.org/10.1155/2022/9915809.

Full text
Abstract:
As a cutting-edge technology, hyperspectral remote sensing has been widely applied in many fields, including agricultural production, mineral identification, target detection, disaster warning, military reconnaissance, and urban planning. The collected hyperspectral data have high spectral resolution and spatial resolution and are characterized by a large amount of information, redundancy, and high dimension. At the same time, there is a strong correlation between the bands. Therefore, hyperspectral data not only provides rich information but also brings great challenges for subsequent processing. Hyperspectral image classification is a hot issue in remote sensing information processing. Traditional hyperspectral remote sensing image classification methods only use the spectral features of the image without considering the spatial features of each pixel in the hyperspectral remote sensing image. In this paper, a hyperspectral image classification method is proposed not only considering spectral features but also considering texture features. This method jointly considers both these features. Firstly, six texture features contributing a lot to each pixel of hyperspectral remote sensing image are extracted by using a gray level cooccurrence matrix, and then, the spectral features of each pixel in neighbor are combined to form the texture-spectral features. Finally, the classification experiment of the Indian Pines and Pavia University scene is carried out based on a support vector machine and extreme random tree algorithm, and the obtained results show that the proposed method achieves higher classification performance than the traditional method.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Rui, and Shihong Du. "Spectral-Spatial Residual Network for Fusing Hyperspectral and Panchromatic Remote Sensing Images." Remote Sensing 14, no. 3 (2022): 800. http://dx.doi.org/10.3390/rs14030800.

Full text
Abstract:
Fusing hyperspectral and panchromatic remote sensing images can obtain the images with high resolution in both spectral and spatial domains. In addition, it can complement the deficiency of high-resolution hyperspectral and panchromatic remote sensing images. In this paper, a spectral–spatial residual network (SSRN) model is established for the intelligent fusion of hyperspectral and panchromatic remote sensing images. Firstly, the spectral–spatial deep feature branches are built to extract the representative spectral and spatial deep features, respectively. Secondly, an enhanced multi-scale residual network is established for the spatial deep feature branch. In addition, an enhanced residual network is established for the spectral deep feature branch This operation is adopted to enhance the spectral and spatial deep features. Finally, this method establishes the spectral–spatial deep feature simultaneity to circumvent the independence of spectral and spatial deep features. The proposed model was evaluated on three groups of real-world hyperspectral and panchromatic image datasets which are collected with a ZY-1E sensor and are located at Baiyangdian, Chaohu and Dianchi, respectively. The experimental results and quality evaluation values, including RMSE, SAM, SCC, spectral curve comparison, PSNR, SSIM ERGAS and Q metric, confirm the superior performance of the proposed model compared with the state-of-the-art methods, including AWLP, CNMF, GIHS, MTF_GLP, HPF and SFIM methods.
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, Xue, Yu Wang, Yu Li, and Shiqing Dou. "Remote Sensing Image Segmentation Based on Hierarchical Student’s-t Mixture Model and Spatial Constrains with Adaptive Smoothing." Remote Sensing 15, no. 3 (2023): 828. http://dx.doi.org/10.3390/rs15030828.

Full text
Abstract:
Image segmentation is an important task in image processing and analysis but due to the same ground object having different spectra and different ground objects having similar spectra, segmentation, particularly on high-resolution remote sensing images, can be significantly challenging. Since the spectral distribution of high-resolution remote sensing images can have complex characteristics (e.g., asymmetric or heavy-tailed), an innovative image segmentation algorithm is proposed based on the hierarchical Student’s-t mixture model (HSMM) and spatial constraints with adaptive smoothing. Considering the complex distribution of spectral intensities, the proposed algorithm constructs the HSMM to accurately build the statistical model of the image, making more reasonable use of the spectral information and improving segmentation accuracy. The component weight is defined by the attribute probability of neighborhood pixels to overcome the influence of image noise and make a simple and easy-to-implement structure. To avoid the effects of artificially setting the smoothing coefficient, the gradient optimization method is used to solve the model parameters, and the smoothing coefficient is optimized through iterations. The experimental results suggest that the proposed HSMM can accurately model asymmetric, heavy-tailed, and bimodal distributions. Compared with traditional segmentation algorithms, the proposed algorithm can effectively overcome noise and generate more accurate segmentation results for high-resolution remote sensing images.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography