Academic literature on the topic 'High-speed clock'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High-speed clock.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High-speed clock"
Wu, P. B. "High-Speed Clock Network Design." IEEE Circuits and Devices Magazine 20, no. 5 (September 2004): 36. http://dx.doi.org/10.1109/mcd.2004.1343250.
Full textSWARTZ, ROBERT G. "ULTRA-HIGH SPEED MULTIPLEXER/DEMULTIPLEXER ARCHITECTURES." International Journal of High Speed Electronics and Systems 01, no. 01 (March 1990): 73–99. http://dx.doi.org/10.1142/s0129156490000058.
Full textYao, Guo Zhong, Li Si Ai, Li Zhong Shen, and Gui Yong Wang. "Research on the High-Speed Data Acquisition System Based on Clock Distribution." Advanced Materials Research 834-836 (October 2013): 1039–46. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.1039.
Full textKAWASAKI, Kazumasa, Takashi MIYAGUCHI, Hiroshi SAITOH, Tomoyuki KATO, Koroh KOBAYASHI, Hisayuki NAKAGAWA, and Kazunori KOBAYASHI. "E7 Development of Prototype of High Speed Clock Module(Other manufacturing-related technologies)." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2009.5 (2009): 235–38. http://dx.doi.org/10.1299/jsmelem.2009.5.235.
Full textKook, J., J. K. Wee, G. Moon, and S. Lee. "Clock distribution scheme for high-speed DRAM." Electronics Letters 38, no. 13 (2002): 626. http://dx.doi.org/10.1049/el:20020446.
Full textDu, Xiu Li, Cun Da Chu, and Shao Ming Qiu. "Design and Implementation of High-Speed Clock Recovery Circuits Based on FPGA." Applied Mechanics and Materials 602-605 (August 2014): 2586–89. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.2586.
Full textLuo, Pu. "DLL-Based Receiver for High Speed Data Transmission." Advanced Materials Research 753-755 (August 2013): 2471–74. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.2471.
Full textMINAMI, FUMIHIRO. "High Speed Clock Design beyond 1 GHz Frequency." Journal of the Institute of Electrical Engineers of Japan 121, no. 5 (2001): 330–33. http://dx.doi.org/10.1541/ieejjournal.121.330.
Full textYamashita, Takao, and Satoshi Ono. "Clock frequency synchronization using high-speed digital networks." Systems and Computers in Japan 28, no. 5 (May 1997): 44–51. http://dx.doi.org/10.1002/(sici)1520-684x(199705)28:5<44::aid-scj5>3.0.co;2-o.
Full textLi, Tie Hu, Rui Tao Zhang, Wei Dong Yang, and Guang Bing Chen. "An Analog-Digital Clock DLL Control Circuit Used for High-Speed High-Resolution Digital-to-Analog Converter." Applied Mechanics and Materials 716-717 (December 2014): 1293–97. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.1293.
Full textDissertations / Theses on the topic "High-speed clock"
Desiraju, Santosh. "High Speed Clock Glitching." Cleveland State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=csu1424139368.
Full textNamachivayam, Abishek. "High speed Clock and Data Recovery Analysis." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587583678200267.
Full textSun, Lizhong. "High speed submicron CMOS oscillators and PLL clock generators." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/NQ48337.pdf.
Full textVan, Dinh Anh. "High speed MMDS transceiver implementation with GPS clock synchronization." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60213.pdf.
Full textSun, Lizhong Carleton University Dissertation Engineering Electronics. "High speed submicron CMOS oscillators and PLL clock generators." Ottawa, 1999.
Find full textChattopadhyay, Atanu. "High-speed structures for dynamically clocked and multi-clock systems." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79221.
Full textHo, Wen Tsern 1977. "Clock and data recovery circuitry for high speed communication systems." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82494.
Full textThis thesis investigates the usage of legacy architectures and the implementation of different topologies using digital CMOS technology. Various Clock and Data Recovery Phase-Locked Loops have been implemented using a 0.18mum CMOS technology, and the process from modeling to actual implementation will be presented. The design of the components of the loop, layout issues, and the performance of the various designs will be discussed. New fully-differential CMOS designs that are optimized for high-speed operation, yet providing stable lock with minimal jitter, with a targeted operation range from 1 GHz to 7 GHz, will be described in detail, as well as their operation and optimization.
Kumar, Daniel Prashanth. "Calibration of sampling clock skew in high-speed, high-resolution time-interleaved ADCs." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99833.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 157-160).
There is an ever-increasing demand for high-resolution and high-resolution ADCs. In order to raise the sampling rates of ADCs in a power efficient manner, time-interleaving is an essential technique, whereby N ADC channels, each operating at a sampling frequency of fs, are used to achieve an effective conversion rate of N - fs. While time-interleaving enables higher conversion rates in a given technology, mismatch issues such as gain, offset, and sampling clock skew between channels degrade the overall time-interleaved ADC performance. Of these issues, sampling clock skew between channels is the biggest problem in high-speed and high-resolution, time-interleaved ADCs as errors due to sampling clock skew become more severe for higher input frequencies. There are a few sources of sampling clock skew between channels. Mismatches in the sampling clock path and logic delays are the most obvious ones. Input signal routing mismatch and RC mismatch of the input sampling circuits also cause sampling clock skew. In this thesis, we developed two new methods to mitigate the effects of sampling clock skew in time-interleaved ADCs. The first is the rapid consecutive sampling method, whereby each interleaved channel is implemented using two sub-channel ADCs. Two consecutive samples of the input are taken with a short time delay between them. This allows for a straight-forward linear interpolation between the consecutive samples in order to recover the de-skewed sample. The second method entails introducing a programmable delay in the input signal path, instead of delaying the sampling clock, in order to calibrate out sampling clock skew. The design and implementation of a proof-of-concept, time-interleaved ADC that implements the input signal delay method is detailed. Finally, measurement results to show the efficacy of the proposed method in mitigating the effects of sampling clock skew is also presented.
by Daniel Kumar.
Ph. D.
Guo, Xiaoling. "CMOS intra-chip wireless clock distribution." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011427.
Full textShastri, Bhavin. "High-speed burst-mode clock and data recovery circuits for multiaccess networks." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106290.
Full textLes réseaux optiques à accès multiple, et plus spécifiquement les réseaux optiques passifs (PONs) sont considérés comme une des technologies les plus prometteuses pour le déploiement de fibre-aux-locaux/cabinet/bâtiment/domicile/usager (FTTx) qui résout le problème de bande passante limitée dans les réseaux locaux (LAN). Les PONs atteignent cet objectif à travers une solution à faible coût. Dans un réseau PON, plusieurs usagers partagent la même infrastructure de fibre selon une topologie de réseau point-à-multipoint (P2MP). Ceci est opposé aux autres technologies d'accès actuelles qui sont basées sur une topologie de réseau point-à-point (P2P), notamment le `digital subscriber line' asymétrique ou à vitesse très élevée (xDSL) et la technologie d'accès par câble coaxial. La nature des réseaux P2MP introduit des délais dans le chemin optique qui occasionnent des variations d'amplitude allant jusqu'à 20 dB et des variations de phase de −2π à 2π rad sur les paquets de données du trafic en mode rafale (burst-mode). En conséquence, cela crée de nouveaux défis pour la conception et le test des récepteurs optiques, des circuits de récupération d'horloge et de données (CDR); en particulier, les circuits CDR en mode rafale (BM-CDR).Nous démontrons deux architectures nouvelles de BM-CDRs. Ces BM-CDRs atteignent un fonctionnement sans erreurs [taux d'erreur binaire (BER) < 10e−10] tout en fournissant une acquisition instantanée (0 bits préambule) de phase de l'horloge pour tous les pas de phases (±2π rad) entre les `bursts' successives. L'acquisition de la phase instantanée améliore l'efficacité physique du trafic en amont du réseau PON, et accroît le débit effectif du système en augmentant le taux d'information. Nos architectures éloquentes et évolutives de BM-CDRs permettent la conception avec de l'électronique commerciale de faible complexité, offrant ainsi une solution rentable pour les PONs.Le premier BM-CDR (à 5 Gb/s) que nous avons conçu et réalisé est basé sur un circuit CDR à sur-échantillonnage temporel (semi-aveugle, opéré à 2× le taux binaire) pour la suivie de phase et sur un aligneur de phase de l'horloge (CPA) qui utilise un algorithme de sélection de phase. Le deuxième BM-CDR (à 10 Gb/s) est basé sur un sur-échantillonnage spatial semi-aveugle, et emploie un circuit CDR de suivi de phase avec des horloges à multi-phases au même débit binaire que l'information, et un CPA avec un algorithme nouveau pour la sélection de phase. En plus, nous démontrons expérimentalement ces BM-CDRs sur différents bancs d'essais optiques: (1) une liaison montante de 5 Gb/s d'un réseau optique passif gigabit Ethernet (GEPON) de 20 km, basé sur un multiplexage temporel (TDM); (2) une autre liaison en amont de 2.5 Gb/s d'un réseau optique passif à multiplexage par longueur d'onde (WDM PON), basé sur un multiplexage de sous-porteuses qui se chevauchent (O-SCM); (3) un lien optique de 1300 km (aller-retour) déployé entre Montréal et Québec à 1.25 Gb/s; et (4) une liaison montante à 622 Mb/s sur un réseau optique passif de 20 km qui utilise un encodage spectral incohérent d'amplitude à accès multiple par répartition de codes (SAC-OCDMA). Nous fournissons également un cadre théorique pour modéliser et analyser les BM-CDRs. Nous développons une théorie unifiée probabiliste pour les BM-CDRs, basée sur des techniques de sur-échantillonnage semi-aveugle soit dans le domaine temporel, soit dans le domaine spatial. Cette théorie a été également généralisée pour les CDRs conventionnels et ceux à sur-échantillonnage de N fois. Sur la base de cette théorie, nous effectuons une analyse théorique. Nous évaluons le BER et le PLR des circuits BM-CDRs pour comparer les résultats avec les expériences afin de valider le modèle théorique. Cette analyse couplée avec ces résultats expérimentaux raffinera les modèles théoriques des circuits 'front-end' de mode rafale et des PONs, et fournira des données pour établir des budgets de puissance réalistes.
Books on the topic "High-speed clock"
Zhu, Qing K. High-Speed Clock Network Design. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9.
Full textZhu, Qing K. High-speed clock network design. Boston: Kluwer Academic Publishers, 2003.
Find full textRoermund, Arthur H. M. van, Casier Herman, and SpringerLink (Online service), eds. Analog Circuit Design: High-speed Clock and Data Recovery, High-performance Amplifiers, Power Management. Dordrecht: Springer Science+Business Media B.V., 2009.
Find full textCalvert, John R. Design of a synchronous pipelined multiplier and analysis of clock skew in high-speed digital systems. Monterey, Calif: Naval Postgraduate School, 2000.
Find full textSteyaert, Michiel, Arthur H. M. van Roermund, and Herman Casier. Analog Circuit Design: High-speed Clock and Data Recovery, High-performance Amplifiers, Power Management. Springer Netherlands, 2010.
Find full textFriedman, Eby G., Ivan S. Kourtev, and Baris Taskin. Timing Optimization for High-Speed Digital Circuits. Springer, 2000.
Find full textDesign of a Synchronous Pipelined Multiplier and Analysis of Clock Skew in High-Speed Digital Systems. Storming Media, 2000.
Find full textWittman, David M. Time Dilation and Length Contraction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199658633.003.0007.
Full textBook chapters on the topic "High-speed clock"
Zhu, Qing K. "Balanced Clock Routing Algorithms." In High-Speed Clock Network Design, 147–61. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_10.
Full textZhu, Qing K. "Microprocessor Clock Distribution Examples." In High-Speed Clock Network Design, 89–107. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_6.
Full textZhu, Qing K. "Clock Network Simulation Methods." In High-Speed Clock Network Design, 109–24. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_7.
Full textZhu, Qing K. "Routing Clock On Package." In High-Speed Clock Network Design, 135–46. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_9.
Full textZhu, Qing K. "Clock Generation and De-skewing." In High-Speed Clock Network Design, 75–88. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_5.
Full textZhu, Qing K. "Low-Voltage Swing Clock Distribution." In High-Speed Clock Network Design, 125–34. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_8.
Full textZhu, Qing K. "Clock Tree Design Flow in ASIC." In High-Speed Clock Network Design, 163–70. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_11.
Full textZhu, Qing K. "Overview to Timing Constraints." In High-Speed Clock Network Design, 23–40. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_2.
Full textZhu, Qing K. "Sequential Clocked Elements." In High-Speed Clock Network Design, 41–56. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_3.
Full textZhu, Qing K. "Design Methodology for Domino Circuits." In High-Speed Clock Network Design, 57–73. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3705-9_4.
Full textConference papers on the topic "High-speed clock"
Pedrotti, Ken. "Clock recovery for high-speed optical communication." In Critical Review Collection. SPIE, 1996. http://dx.doi.org/10.1117/12.229266.
Full textKhalil, Ragai L., Larry R. McAdams, and Joseph W. Goodman. "Optical Clock Distribution For High Speed Computers." In O-E/Fiber LASE '88, edited by James E. Hayes and James Pazaris. SPIE, 1988. http://dx.doi.org/10.1117/12.959999.
Full textReuben, John, Zackriya V. Mohammed, and Harish M. Kittur. "Low power, high speed hybrid clock divider circuit." In 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT). IEEE, 2013. http://dx.doi.org/10.1109/iccpct.2013.6528876.
Full textMusa, Faisal A., and Anthony Chan Carusone. "High-speed baud-rate clock and data recovery." In 2007 7th International Conference on ASIC. IEEE, 2007. http://dx.doi.org/10.1109/icasic.2007.4415568.
Full textHaller, Istvan, and Zoltan Francisc Baruch. "High-speed clock recovery for low-cost FPGAs." In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010). IEEE, 2010. http://dx.doi.org/10.1109/date.2010.5457133.
Full textMalhotra, Gaurav, and Jalil Kamali. "Symbol spaced clock recovery for high speed links." In 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS). IEEE, 2019. http://dx.doi.org/10.1109/icspcs47537.2019.9008595.
Full textYong Zhang, Yaling Li, and Ting Li. "A clock circuit for high speed and high resolution pipeline ADC." In 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2014. http://dx.doi.org/10.1109/edssc.2014.7061147.
Full textChegeni, Amin, Reza Shayanfar, Khayrollah Hadidi, and Abdollah Khoei. "Input dependent clock jitter in high speed and high resolution ADCs." In 2012 IEEE International Symposium on Circuits and Systems - ISCAS 2012. IEEE, 2012. http://dx.doi.org/10.1109/iscas.2012.6271948.
Full textCho, Jun Dong, and Majid Sarrafzadeh. "A buffer distribution algorithm for high-speed clock routing." In the 30th international. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/157485.165019.
Full textEnomoto, Tadayoshi, Suguru Nagayama, and Nobuaki Kobayashi. "Low-Power High-Speed 180-nm CMOS Clock Drivers." In 2007 Asia and South Pacific Design Automation Conference. IEEE, 2007. http://dx.doi.org/10.1109/aspdac.2007.357973.
Full text