Journal articles on the topic 'High-speed sintering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High-speed sintering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ellis, Adam, Antonis Hadjiforados, Neil Hopkinson, and Ingo Reinhold. "Speed and Accuracy of High Speed Sintering." NIP & Digital Fabrication Conference 31, no. 1 (2015): 303–6. http://dx.doi.org/10.2352/issn.2169-4451.2015.31.1.art00067_1.
Full textEllis, Adam, Christopher J. Noble, Liam Hartley, Charis Lestrange, Neil Hopkinson, and Candice Majewski. "Materials for high speed sintering." Journal of Materials Research 29, no. 17 (2014): 2080–85. http://dx.doi.org/10.1557/jmr.2014.156.
Full textAraujo Filho, Oscar O., Maurício David Martins das Neves, João Franklin Liberati, Luís Carlos Elias da Silva, Lucio Salgado, and Francisco Ambrozio Filho. "Sintering of AISI M3:2 High Speed Steel – Part II." Materials Science Forum 530-531 (November 2006): 358–63. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.358.
Full textZhou, Rui, Xiao Gang Diao, Jun Chen, Xiao Nan Du, Guo Ding Yuan, and Gui Fang Sun. "Effect of Spark Plasma Sintering on the Microstructure Evolution and Properties of M3:2 High-Speed Steel." Materials Science Forum 788 (April 2014): 329–33. http://dx.doi.org/10.4028/www.scientific.net/msf.788.329.
Full textKulkarni, K. M. "Liquid Phase Sintering in High Speed Steels." Solid State Phenomena 8-9 (January 1991): 223–34. http://dx.doi.org/10.4028/www.scientific.net/ssp.8-9.223.
Full textBolton, J. D., A. J. Gant, and R. J. M. Hague. "Liquid-phase sintering of high-speed steels." Journal of Materials Science 26, no. 19 (1991): 5203–11. http://dx.doi.org/10.1007/bf01143214.
Full textKulkarni, K. M. "Liquid phase sintering in high speed steels." Metal Powder Report 45, no. 9 (1990): 629–33. http://dx.doi.org/10.1016/0026-0657(90)90594-7.
Full textNonaka, Kazumichi, Mitsuji Teramae, and Giuseppe Pezzotti. "Evaluation of the Effect of High-Speed Sintering and Specimen Thickness on the Properties of 5 mol% Yttria-Stabilized Dental Zirconia Sintered Bodies." Materials 15, no. 16 (2022): 5685. http://dx.doi.org/10.3390/ma15165685.
Full textNogueira, Romário Mauricio Urbanetto, and César Edil da Costa. "Sinterability of High-Speed Steels M2, M3/2 and T15." Materials Science Forum 498-499 (November 2005): 238–43. http://dx.doi.org/10.4028/www.scientific.net/msf.498-499.238.
Full textNazir, Aamer, and Jeng-Ywan Jeng. "A high-speed additive manufacturing approach for achieving high printing speed and accuracy." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 14 (2019): 2741–49. http://dx.doi.org/10.1177/0954406219861664.
Full textWilliams, Rhys J., Luke Fox, and Candice Majewski. "The effect of powder age in high speed sintering of poly(propylene)." Rapid Prototyping Journal 27, no. 4 (2021): 707–19. http://dx.doi.org/10.1108/rpj-05-2020-0090.
Full textCho, Mi-Hyang, and Hyo-Joung Seol. "Effect of High-Speed Sintering on the Optical Properties, Microstructure, and Phase Distribution of Multilayered Zirconia Stabilized with 5 mol% Yttria." Materials 16, no. 16 (2023): 5570. http://dx.doi.org/10.3390/ma16165570.
Full textMadej, Marcin, Beata Leszczyńska-Madej, and Dariusz Garbiec. "High Speed Steel with Iron Addition Materials Sintered by Spark Plasma Sintering." Metals 10, no. 11 (2020): 1549. http://dx.doi.org/10.3390/met10111549.
Full textNenasheva, E. A., M. V. Bykova, N. O. Guk, R. G. Nazaryan, and I. Y. Lebedenko. "Comparison of transparency indicators of domestic samples of dental multilayer ceramics based on zirconium dioxide with indicators of a foreign analogue under different sintering modes." Medical alphabet, no. 28 (January 12, 2025): 98–101. https://doi.org/10.33667/2078-5631-2024-28-98-101.
Full textAl-Haj Husain, Nadin, Mutlu Özcan, Nataliya Dydyk, and Tim Joda. "Conventional, Speed Sintering and High-Speed Sintering of Zirconia: A Systematic Review of the Current Status of Applications in Dentistry with a Focus on Precision, Mechanical and Optical Parameters." Journal of Clinical Medicine 11, no. 16 (2022): 4892. http://dx.doi.org/10.3390/jcm11164892.
Full textKemnitzer, Jan, Anna Tarasova, and Daniel Pezold. "Fertigung funktional gradierter Bauteile im High Speed Sintering." maschinenbau 1, no. 4 (2021): 8–11. http://dx.doi.org/10.1007/s44029-021-0066-4.
Full textLiu, Z. Y., N. H. Loh, K. A. Khor, and S. B. Tor. "Sintering of injection molded M2 high-speed steel." Materials Letters 45, no. 1 (2000): 32–38. http://dx.doi.org/10.1016/s0167-577x(00)00070-7.
Full textGüntekin, Neslihan, Burcu Kızılırmak, and Ali Rıza Tunçdemir. "Comparison of Mechanical and Optical Properties of Multilayer Zirconia After High-Speed and Repeated Sintering." Materials 18, no. 7 (2025): 1493. https://doi.org/10.3390/ma18071493.
Full textBharaj, Karan, Sourabh Paul, Kamran Aamir Mumtaz, Michael Chisholm, and Neil Hopkinson. "Fabricating poly(methyl methacrylate) parts using high-speed sintering." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 234, no. 1-2 (2019): 118–25. http://dx.doi.org/10.1177/0954405419851690.
Full textYou, Hang, Xian Rui Wang, Cui Liang, Xiao Qin Ding, Xiao Yun Han, and Jin Fu Xu. "Investigation on the Bonding Mechanism of M42 Powder High-Speed Steel and 45 Steel." Advanced Materials Research 217-218 (March 2011): 243–48. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.243.
Full textWright, C. Steven. "Supersolidus Sintering of High Speed Steels - Comparison of Sintering Theory with Experimental Observations." Solid State Phenomena 25-26 (January 1992): 463–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.25-26.463.
Full textWright, c. S., and B. Ogel. "Supersolidus Sintering of High Speed Steels: Part 1: Sintering of Molybdenum Based Alloys." Powder Metallurgy 36, no. 3 (1993): 213–19. http://dx.doi.org/10.1179/pom.1993.36.3.213.
Full textWright, C. S., B. Ogel, F. Lemoisson, and Y. Bienvenu. "Supersolidus Sintering of High Speed Steels: Part 2: Sintering of Tungsten Based Alloys." Powder Metallurgy 38, no. 3 (1995): 221–29. http://dx.doi.org/10.1179/pom.1995.38.3.221.
Full textNiu, H. J., and I. T. H. Chang. "Liquid phase sintering of M3/2 high speed steel by selective laser sintering." Scripta Materialia 39, no. 1 (1998): 67–72. http://dx.doi.org/10.1016/s1359-6462(98)00126-2.
Full textNonaka, Kazumichi, Mitsuji Teramae, and Giuseppe Pezzotti. "Effect of Ga2O3 Dopant on High Speed Sintered 5 mol% Y2O3 Stabilized Dental Zirconia." Materials 16, no. 2 (2023): 714. http://dx.doi.org/10.3390/ma16020714.
Full textQiang, Liang Sheng, Dong Yan Tang, Xing Hong Zhang, and L. Jin. "High-Speed Synthesis and Electric Properties of Magnesium Doped Lead Titanate Ceramics." Solid State Phenomena 121-123 (March 2007): 149–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.149.
Full textPezold, Daniel, Marco Wimmer, Fayez Alfayez, Zahir Bashir, and Frank Döpper. "Evaluation of Polyethylene Terephthalate Powder in High Speed Sintering." Polymers 14, no. 10 (2022): 2095. http://dx.doi.org/10.3390/polym14102095.
Full textLawson, Nathaniel C., and Anvita Maharishi. "Strength and translucency of zirconia after high‐speed sintering." Journal of Esthetic and Restorative Dentistry 32, no. 2 (2019): 219–25. http://dx.doi.org/10.1111/jerd.12524.
Full textAlkarr, Saleh, Zahir Bashir, Marco Wimmer, Johann Schorzmanm, and Frank Döpper. "Anti-microbial plastic parts fabricated by high-speed sintering." Materials Science in Additive Manufacturing 3, no. 4 (2024): 4970. https://doi.org/10.36922/msam.4970.
Full textBaglyuk, G. A., and L. A. Poznyak. "Structure formation during activated sintering of high-speed steel." Powder Metallurgy and Metal Ceramics 43, no. 11-12 (2004): 570–75. http://dx.doi.org/10.1007/s11106-005-0023-4.
Full textSmirnov, K. L. "Sintering of SiAlON ceramics under high-speed thermal treatment." Powder Metallurgy and Metal Ceramics 51, no. 1-2 (2012): 76–82. http://dx.doi.org/10.1007/s11106-012-9399-0.
Full textMadej, M. "Copper infiltrated high speed steel skeletons." Archives of Materials Science and Engineering 1, no. 98 (2019): 5–31. http://dx.doi.org/10.5604/01.3001.0013.3391.
Full textXing, Zhenxing, Gongjin Cheng, He Yang, and Xiangxin Xue. "Resource utilization of High-Ti vanadium titanomagnetite: Preparation and properties of sinter." Metallurgical Research & Technology 120, no. 6 (2023): 606. http://dx.doi.org/10.1051/metal/2023074.
Full textKatkade, Akanksha Sanjay, Nida Mustabshira, Kishor M. Mahale, et al. "Effect of different sintering cycles on the flexural strength and translucency of CAD-CAM milled monolithic zirconia with different thicknesses." Journal of Dental Panacea 6, no. 3 (2024): 144–49. http://dx.doi.org/10.18231/j.jdp.2024.029.
Full textMajewski, C. E., D. Oduye, H. R. Thomas, and N. Hopkinson. "Effect of infra‐red power level on the sintering behaviour in the high speed sintering process." Rapid Prototyping Journal 14, no. 3 (2008): 155–60. http://dx.doi.org/10.1108/13552540810878012.
Full textKloc, A., Leszek Adam Dobrzański, G. Matula, and José M. Torralba. "Effect of Manufacturing Methods on Structure and Properties of the Gradient Tool Materials with the Non-Alloy Steel Matrix Reinforced with the HS6-5-2 Type High-Speed Steel." Materials Science Forum 539-543 (March 2007): 2749–54. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2749.
Full textCovaciu, Manuela, Traian Canta, and Elena Gordo. "Characterization and Sinterability Study of P.M. High-Speed Steel Obtained by Water Atomization." Advanced Materials Research 23 (October 2007): 147–50. http://dx.doi.org/10.4028/www.scientific.net/amr.23.147.
Full textYathish, Narayana Rao K. N., K. Mohamed Kaleemulla Dr., and M. Venkatraj. "Preparation and Analyzing of Micro Structural of Aluminum Oxide (Al2o3) in High Speed Machining." Journal of Advancement in Machines 5, no. 1 (2020): 24–32. https://doi.org/10.5281/zenodo.3783982.
Full textMascarenhas, João M. G., Manuela Oliveira, and C. Steven Wright. "Effect of Vanadium and Carbon Content on the Sinterability of Water Atomised High Speed Steel Powders." Materials Science Forum 514-516 (May 2006): 529–33. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.529.
Full textZhou, R., D. Wang, Jun Shen, and J. Sun. "Effect of Carbon Addition on the Microstructure and Properties of M3:2 High Speed Steels Processed by Powder Metallurgy." Advanced Materials Research 29-30 (November 2007): 153–58. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.153.
Full textPoznyak, L. A., K. A. Gogaev, V. A. Shtakun, and V. I. Ul'nish. "Formation and solid-phase sintering of high-speed steel powders." Soviet Powder Metallurgy and Metal Ceramics 29, no. 4 (1990): 299–302. http://dx.doi.org/10.1007/bf00797231.
Full textRomano, P., O. Lyckfeldt, N. Candela, and José M. Torralba. "Nitrogen Sintering of High Speed Steel Processed by Starch Consolidation." Materials Science Forum 416-418 (February 2003): 369–74. http://dx.doi.org/10.4028/www.scientific.net/msf.416-418.369.
Full textMovchan, O. V., and K. O. Chornoivanenko. "Transformations during liquid-phase sintering of high-speed alloy powders." Metaloznavstvo ta obrobka metalìv 89, no. 1 (2019): 9–15. http://dx.doi.org/10.15407/mom2019.01.009.
Full textWähling, R., P. Beiss, and W. J. Huppmann. "Sintering Behaviour and Performance Data of High Speed Steel Components." Powder Metallurgy 29, no. 1 (1986): 53–56. http://dx.doi.org/10.1179/pom.1986.29.1.53.
Full textIgharo, M., and J. V. Wood. "Sintering of Mixed High Speed Steel and Iron—Phosphorus Powders." Powder Metallurgy 31, no. 3 (1988): 184–88. http://dx.doi.org/10.1179/pom.1988.31.3.184.
Full textWright, C. S., M. Lewicka, W. J. C. Price, and L. Fontaine. "Densification of T1 High Speed Steel Powders by Vacuum Sintering." Powder Metallurgy 32, no. 2 (1989): 109–13. http://dx.doi.org/10.1179/pom.1989.32.2.109.
Full textMartins, Isabel M., Luis Esperto, and Mário J. G. Santos. "Sintering M3/2 High Speed Steel Powder by DMLS Process." Materials Science Forum 514-516 (May 2006): 1506–10. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.1506.
Full textSauti, R., N. A. Wahab, M. A. Omar, and I. N. Ahmad. "The Influence of Sintering Atmosphere for Metal Injection Moulding M2 High Speed Steel." Advanced Materials Research 879 (January 2014): 169–74. http://dx.doi.org/10.4028/www.scientific.net/amr.879.169.
Full textNenasheva, Elizaveta, Marina Bykova, Mikhail Deev, and Denis Bykov. "STUDYING THE FLEXURAL STRENGTH OF SAMPLES OF MULTILAYER DENTAL CERAMICS BASED ON ZIRCONIUM DIOXIDE OF DOMESTIC AND CHINESE PRODUCTION AFTER TRADITIONAL AND HIGH-SPEED SINTERING." Actual problems in dentistry 20, no. 2 (2024): 191–95. http://dx.doi.org/10.18481/2077-7566-2024-20-2-191-195.
Full textSahabieva, Dzhamilya, Mikhail Deev, Elena D'yanonenko, Irina Poyurovskaya, Fedor Rusanov, and Igor' Lebedenko. "EFFECT OF HIGH-SPEED SINTERING OF RUSSIAN PRODUCED ZICERAM T ZIRCONIA-BASED CERAMIC MATERIAL ON STRENGTH AND COLOR." Actual problems in dentistry 17, no. 4 (2022): 140–44. http://dx.doi.org/10.18481/2077-7566-21-17-4-140-144.
Full text