To see the other types of publications on this topic, follow the link: High strength concrete Testing.

Journal articles on the topic 'High strength concrete Testing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'High strength concrete Testing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Price, W. F., and J. P. Hynes. "In-situ strength testing of high strength concrete." Magazine of Concrete Research 48, no. 176 (September 1996): 189–97. http://dx.doi.org/10.1680/macr.1996.48.176.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, Claude D., and S. Ali Mirza. "Confined capping system for compressive strength testing of high performance concrete cylinders." Canadian Journal of Civil Engineering 22, no. 3 (June 1, 1995): 617–20. http://dx.doi.org/10.1139/l95-070.

Full text
Abstract:
This paper presents a simple, inexpensive confined cap testing method which can be employed in the compressive strength testing of high performance concrete cylinders. An inexpensive customized cylinder capping apparatus and standard concrete laboratory testing equipment are employed. The paper describes the capping apparatus, capping and testing procedures, as well as test results for concrete compressive strengths up to and exceeding 100 MPa. Key words: capping, capping confinement, compressive strength, cylinders, end condition, grinding, high-strength concrete, specimen size, testing.
APA, Harvard, Vancouver, ISO, and other styles
3

Solikin, Mochamad. "Compressive Strength Development of High Strength High Volume Fly Ash Concrete by Using Local Material." Materials Science Forum 872 (September 2016): 271–75. http://dx.doi.org/10.4028/www.scientific.net/msf.872.271.

Full text
Abstract:
This paper presents a research to produce high strength concrete incorporated with fly ash as cement replacement up to 50% (high volume fly ash concrete) by using local material. The research is conducted by testing the strength development of high volume fly ash concrete at the age of 14 days, 28 days and 56 days. As a control mix, the compressive strength of Ordinary Portland Cement (OPC) concrete without fly ash is used. Both concrete mixtures use low w/c. consequently, they lead to the use of 1 % superplasticizer to reach sufficient workability in the process of casting. The specimens are
APA, Harvard, Vancouver, ISO, and other styles
4

Hooton, RD, M. Sonebi, and KH Khayat. "Testing Abrasion Resistance of High-Strength Concrete." Cement, Concrete and Aggregates 23, no. 1 (2001): 34. http://dx.doi.org/10.1520/cca10523j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davidyuk, Artem, and Igor Rumyantsev. "Quality control of high-performance concrete in high-rise construction during operation." MATEC Web of Conferences 170 (2018): 01035. http://dx.doi.org/10.1051/matecconf/201817001035.

Full text
Abstract:
With onset of the XXI century, the demand for construction of high-rise buildings with the load-bearing framework made of high-performance cast-in-situ concrete has increased many-fold in the construction sector. Specific features of the high-performance concrete of bearing structures in the situation of real operation of high-rise buildings are continuously studied by scientists and specialists all over the world, and regulatory and methodological documents are being complemented and adjusted. High-performance concretes and structures made of them possess some specific features that should be
APA, Harvard, Vancouver, ISO, and other styles
6

Sovová, Kateřina, Karel Mikulica, Adam Hubáček, and Karel Dvořák. "Behavior of High Strength Concrete at High Temperatures." Solid State Phenomena 276 (June 2018): 259–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.276.259.

Full text
Abstract:
Concrete is considered as a non-combustible building material. However, at High-Performance Concrete (HPC) is due to its dense structure more likely to occur in explosive spalling. This results in lost of load bearing capacity function of concrete. This paper deals with design, production and testing of the cement-based concrete with the use of different fibers (polypropylene fibers and cellulose fibers). It also assesses the influence of high temperature on strength, visual changes of specimens, changes of surface and degradation of testing specimens due to heat loads according to normative h
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Bo, Yue Bo Cai, Jian Tong Ding, and Yao Jian. "Crack Resistance Evaluating of HSC Based on Thermal Stress Testing." Advanced Materials Research 168-170 (December 2010): 716–20. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.716.

Full text
Abstract:
In order to evaluate the crack resistance of high strength fly ash concrete, concretes with different contents of silica fume and fly ash were compared with same strength grade by adjusting water to binder ratio. Compared with the concrete with 5% silica fume plus 35% fly ash,concrete with 40% fly ash has same mechanical properties and tensile strain as well as lower drying shrinkage. Complex crack resistance of high strength fly ash concretes were evaluated by Temperature Stress Testing Machine (TSTM). The results show that fly ash concretes have outstanding crack resistance because of higher
APA, Harvard, Vancouver, ISO, and other styles
8

Vincent, Thomas, and Togay Ozbakkloglu. "An Experimental Study on the Compressive Behavior of CFRP-Confined High- and Ultra High-Strength Concrete." Advanced Materials Research 671-674 (March 2013): 1860–64. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1860.

Full text
Abstract:
It is well established that external confinement of concrete with fiber reinforced polymer (FRP) sheets results in significant improvements on the axial compressive behavior of concrete. This understanding has led to a large number of experimental studies being conducted over the last two decades. However, the majority of these studies have focused on normal strength concretes (NSC) with compressive strengths lower than 55 MPa, and studies on higher strength concretes have been very limited. This paper presents the results of an experimental study on the compressive behavior of FRP confined hi
APA, Harvard, Vancouver, ISO, and other styles
9

Wedatalla, Afaf M. O., Yanmin Jia, and Abubaker A. M. Ahmed. "Curing Effects on High-Strength Concrete Properties." Advances in Civil Engineering 2019 (March 6, 2019): 1–14. http://dx.doi.org/10.1155/2019/1683292.

Full text
Abstract:
This study was conducted to investigate the impact of hot and dry environments under different curing conditions on the properties of high-strength concrete. The concrete samples were prepared at a room temperature of 20°C and cured under different curing conditions. Some specimens underwent standard curing from 24 h after casting until the day of testing. Some specimens underwent steam curing in a dry oven at 30°C and 50°C after casting until the day of testing. Other specimens were cured for 3, 7, 21, and 28 days in water and then placed in a dry oven at 30°C and 50°C and tested at the age o
APA, Harvard, Vancouver, ISO, and other styles
10

Bickley, J. A., J. Ryell, C. Rogers, and R. D. Hooton. "Some characteristics of high-strength structural concrete." Canadian Journal of Civil Engineering 18, no. 5 (October 1, 1991): 885–89. http://dx.doi.org/10.1139/l91-107.

Full text
Abstract:
The 68-storey Scotia Plaza tower in Toronto is an outstanding example of the use of concrete technology to achieve high-performance high-strength concrete. Cementitious hydraulic slag, silica fume, and a superplasticizer were combined with CSA type-10 Portland cement and high-quality aggregates to produce very workable high-strength concrete. During the course of construction, data were published suggesting the possibility of the strength regression of some silica fume concretes after long exposure to low humidity, the determinations being made on standard test cylinders. Tests were, therefore
APA, Harvard, Vancouver, ISO, and other styles
11

Sucharda, O., V. Bilek, and P. Mateckova. "Testing and mechanical properties of high strength concrete." IOP Conference Series: Materials Science and Engineering 549 (June 18, 2019): 012012. http://dx.doi.org/10.1088/1757-899x/549/1/012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jacobsen, Stefan, Hans Christian Gran, Erik J. Sellevold, and Jon Arne Bakke. "High strength concrete — Freeze/thaw testing and cracking." Cement and Concrete Research 25, no. 8 (December 1995): 1775–80. http://dx.doi.org/10.1016/0008-8846(95)00173-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Zheng Jun, Mei Han, and Felix Zhao. "Applying Research on Testing Technique of High Performance Concrete." Advanced Materials Research 378-379 (October 2011): 226–29. http://dx.doi.org/10.4028/www.scientific.net/amr.378-379.226.

Full text
Abstract:
In order to master timely and accurately construction quality of high performance concrete, detection of compressive strength of high performance concrete can be tested non-destructively, rapidly and accurately. The paper did preliminary research on high performance concrete with redound method, furthermore, it established estimation model between rebound value and compressive strength. Experiment shows that rebound method can effetely test compressive strength of high performance concrete. Construction quality of Cement concrete structure or component can timely grasped in period of construct
APA, Harvard, Vancouver, ISO, and other styles
14

Marzouk, H., and Z. W. Chen. "Nonlinear analysis of normal- and high-strength concrete slabs." Canadian Journal of Civil Engineering 20, no. 4 (August 1, 1993): 696–707. http://dx.doi.org/10.1139/l93-086.

Full text
Abstract:
Concrete slabs supported on four edges and loaded axially and transversely are used in many civil engineering applications. High-strength concrete slabs are commonly used for marine structures and offshore platforms. The catastrophic nature of the failure exhibited by reinforced concrete slabs when subjected to concentrated loads has been a major concern for engineers over many years. Therefore, there is a great need to develop accurate numerical models suitable for normal-strength or high-strength concrete in order to reflect properly its structural behaviour.Proper simulation of the post-cra
APA, Harvard, Vancouver, ISO, and other styles
15

Stehlík, Michal. "TESTING THE STRENGTH OF CONCRETE MADE FROM RAW AND DISPERSION-TREATED CONCRETE RECYCLATE BY ADDITION OF ADDITIVES AND ADMIXTURES." Journal of Civil Engineering and Management 19, no. 1 (January 16, 2013): 107–12. http://dx.doi.org/10.3846/13923730.2012.734853.

Full text
Abstract:
Today, concrete comprises more than 65% of the total volume of building constructions. As it undergoes degradation and buildings require refurbishment, the volume of concrete increases at disposal sites. Due to a lack of non-renewable resources and due to high prices of energies, the reuse of concrete seems to be more than desirable. It is common knowledge that in concretes made from recycled concrete, the strengths of the original concretes can hardly be achieved. The addition of dispersion additives and mineral admixtures into the freshly mixed concrete can contribute to improving the mechan
APA, Harvard, Vancouver, ISO, and other styles
16

Gunay, Ahmet Reha, Sami Karadeniz, and Mustafa Kaya. "An Experimental Study on the Dynamic Behavior of an Ultra High-Strength Concrete." Applied Sciences 10, no. 12 (June 17, 2020): 4170. http://dx.doi.org/10.3390/app10124170.

Full text
Abstract:
Ultra-high-strength concrete is a newly developed construction material that has a minimum 120 MPa or higher compressive strength. Recently, the usage of high-strength and ultra-high-strength concretes has become widespread due to the enhancement of the concrete technology. Many civil engineering structures constructed by using concrete materials are usually subjected to, in addition to static loads, dynamic loads due to earthquakes, wind and storm, impact and blast, which take place under high energy and high strain rate values. The effects of such loadings on the structure must be understood
APA, Harvard, Vancouver, ISO, and other styles
17

Kong, Xu Wen, Long Cui, and Jin Shan Wang. "Experimental Study of Green High Performance Concrete Strength Testing by Rebound Method." Applied Mechanics and Materials 71-78 (July 2011): 737–43. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.737.

Full text
Abstract:
Compare experiment analysis effect of material, slump, carbonation depth on green high performance concrete strength by rebound method, analysis under questions based on microstructure: (1)Basic reason for additives and admixtures etc. impact rebound testing; (2) Significant differences of pumping concrete and plastic concrete; (3) Concrete carbonation depth impact rebound value. Provide the method for improving testing accuracy of green high performance concrete strength testing by rebound method.
APA, Harvard, Vancouver, ISO, and other styles
18

Yi, Wei Jian, and Yan Mei Lv. "Experimental Study on Shear Failure of High-Strength Concrete Beams with High-Strength Stirrups." Key Engineering Materials 400-402 (October 2008): 857–63. http://dx.doi.org/10.4028/www.scientific.net/kem.400-402.857.

Full text
Abstract:
19 RC beams with shear span-to-depth equal to 3 were tested under a stiff testing facility, and complete load-deflection curves including the post-peak branch were obtained. Based on the test results the effects of concrete strength, stirrups strength, inclined stirrup angle, the amount of longitudinal reinforcement on failure mode, shear ductility index and shear capacity were analyzed. The test results were compared with the shear design approaches of Chinese Code and American Code. The results indicate that the shear failure of beam with appropriate web reinforcement has finite ductility. H
APA, Harvard, Vancouver, ISO, and other styles
19

Yu, Le Hua, Shuang Xi Zhou, and Hui Ou. "Experimental Investigation on Properties of High Performance Concrete with Mineral Admixtures in Pavement of Highway." Advanced Materials Research 723 (August 2013): 345–52. http://dx.doi.org/10.4028/www.scientific.net/amr.723.345.

Full text
Abstract:
To meet demand of highperformance pavement concrete in highway, differentproportional concretes incorporating 30%—40% ground granulatedblast furnace slag and (or) fly ash were investigated on engineering properties in laboratory. Workability offresh concrete was evaluated by result of testing slump, mechanical property ofconcrete by flexural strength, abrasion resistance of concrete by index ofabrasion resistance and durability of concrete by chloride diffusioncoefficient and value of charge passed. The results indicate that measuredcharacteristics of concretes are superior to the relevant req
APA, Harvard, Vancouver, ISO, and other styles
20

Elbasha, N., and M. N. S. Hadi. "Experimental testing of helically confined high-strength concrete beams." Structural Concrete 6, no. 2 (June 2005): 43–48. http://dx.doi.org/10.1680/stco.2005.6.2.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kumar, C. Naga Satish, and T. D. Gunneswara Rao. "Fracture parameters of high-strength concrete – mode II testing." Magazine of Concrete Research 62, no. 3 (March 2010): 157–62. http://dx.doi.org/10.1680/macr.2010.62.3.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Thomas, C., J. Sainz-Aja, J. Setien, A. Cimentada, and J. A. Polanco. "Resonance fatigue testing on high-strength self-compacting concrete." Journal of Building Engineering 35 (March 2021): 102057. http://dx.doi.org/10.1016/j.jobe.2020.102057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gaidhane, Ms Sakshi Harish. "“Testing of High-Performance Concrete using Recycled Aggregates”." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 495–98. http://dx.doi.org/10.22214/ijraset.2021.37970.

Full text
Abstract:
Abstract: Tons of waste is produced in the world on every day basis which sometimes gets really hard to manage and. The waste from demolished structures is one of them. Recycling waste consume energy and produces pollution that can lead to many adverse effects on the environment and human life. The disposal of waste is also very dangerous for the environment. Using waste materials like waste aggregates, broken bricks, stones and other material in concrete can help in eliminating the waste and save the environment getting polluted. It is also very much economical and encourages green concrete i
APA, Harvard, Vancouver, ISO, and other styles
24

Lee, Taegyu, Jaehyun Lee, and Hyeonggil Choi. "Assessment of Strength Development at Hardened Stage on High-Strength Concrete Using NDT." Applied Sciences 10, no. 18 (September 9, 2020): 6261. http://dx.doi.org/10.3390/app10186261.

Full text
Abstract:
This study proposes model formulae for predicting the strength of concrete by analyzing the relationships between the results of nondestructive testing (NDT) methods and the compressive strength of concrete specimens at the hardened stage. Further, NDT of concrete molds and mock-up specimens was conducted using NDT methods (rebound hammer, ultrasonic pulse velocity). The water/cement (W/C) ratios were set to 0.48, 0.41, and 0.33 to achieve concrete strengths within the compressive strength range of 24–60 MPa. The evaluation parameters included the fresh concrete properties, compressive strengt
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Zheng Jun, and Felix Zhao. "Applying Research on Testing Compressive Strength of High Performance Concrete with Rebound Method." Advanced Materials Research 452-453 (January 2012): 106–9. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.106.

Full text
Abstract:
In order to grasp timely and accurately quality of high performance concrete, detection of compressive strength of high performance concrete can be non-destructively, rapidly and accurately tested that is very testing index. The paper did some research on compressive strength of high performance concrete applying redound method that it established several estimation models between rebound value and compressive strength. Experiment shows that rebound method can effetely test compressive strength of high performance concrete. Construction quality of Cement concrete structure can timely grasp app
APA, Harvard, Vancouver, ISO, and other styles
26

Baranova, Al'bina, and Ol'ga Yazina. "FOAM CONCRETES BASED ON HIGH-STRENGTH BINDERS." Modern Technologies and Scientific and Technological Progress 2018, no. 1 (March 23, 2020): 97–98. http://dx.doi.org/10.36629/2686-9896-2020-2018-1-97-98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Flores, Elsy Y., Jordan Varbel, Craig M. Newtson, and Brad D. Weldon. "Ultra-High-Performance Concrete Shear Keys in Concrete Bridge Superstructures." MATEC Web of Conferences 271 (2019): 07006. http://dx.doi.org/10.1051/matecconf/201927107006.

Full text
Abstract:
Many existing bridges have adjacent girders that utilize grouted shear keys to transfer loads laterally across the superstructure. Cracking and leaking often cause degradation of the shear key and the girder. This work investigates the potential for using non-proprietary ultra-high performance concrete (UHPC) as a grouting material for repair of deteriorated shear keys by testing bond strength between UHPC and substrate concrete surfaces that were either formed or scarified by chipping. Bond strengths were adequate for both surface textures even though texture depth was substantially less than
APA, Harvard, Vancouver, ISO, and other styles
28

Wardi, Adil Hadi, Gökhan Tunç, and Khalil Ibraheem. "Structural behavior of shear connectors embedded in different types of concrete." Challenge Journal of Structural Mechanics 6, no. 4 (December 20, 2020): 160. http://dx.doi.org/10.20528/cjsmec.2020.04.001.

Full text
Abstract:
Push-out tests are used to determine shear connectors’ properties where two small reinforced concrete walls are attached to the top and bottom flanges of an I-section through four shear studs located on both its flanges. In this study, the structural behavior of shear connectors was examined by testing a total of 36 push-out specimens. In these specimens, various test parameters were used. The types of shear connectors and their strengths, their connection types, and the strength of the concrete in which they were embedded were all investigated. Headed, L-shaped, and C-shaped studs were select
APA, Harvard, Vancouver, ISO, and other styles
29

Mohtasham Moein, Mohammad, Ashkan Saradar, Komeil Rahmati, Arman Hatami Shirkouh, Iman Sadrinejad, Vartenie Aramali, and Moses Karakouzian. "Investigation of Impact Resistance of High-Strength Portland Cement Concrete Containing Steel Fibers." Materials 15, no. 20 (October 14, 2022): 7157. http://dx.doi.org/10.3390/ma15207157.

Full text
Abstract:
Impact resistance of Portland cement concrete (PCC) is an essential property in various applications of PCC, such as industrial floors, hydraulic structures, and explosion-proof structures. Steel-fiber-fortified high-strength concrete testing was completed using a drop-weight impact assessment for impact strength. One mix was used to manufacture 320 concrete disc specimens cured in both humid and dry conditions. In addition, 30 cubic and 30 cylindrical specimens were used to evaluate the compressive and indirect tensile strengths. Steel fibers with hooked ends of lengths of 20, 30, and 50 mm w
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Nan, Juan Liao, Tao Zhang, Wen Zhan Ji, Bao Hua Wang, and Dong Hua Zhang. "The Effect of Mineral Admixtures on Mechanical Properties of High Performance Concrete at very Low Temperature." Applied Mechanics and Materials 584-586 (July 2014): 1509–13. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.1509.

Full text
Abstract:
The effect of very low temperature on high performance concrete (HPC) mechanical properties is studied by using a reasonable testing method. The results show that the compressive strengths of concrete are increasing with lower temperatures. Fly ash (FA), compared to ground granulated blast-furnace slag (GGBFS), is positive to the compressive strength increasing at low temperature. The splitting tensile strengths of concrete appear a maximum at-40°C~-80°C. The compound replacement by GGBFS and FA makes the splitting tensile strength present the extreme value at higher temperature. At very low t
APA, Harvard, Vancouver, ISO, and other styles
31

Korolev, Evgeniy Valerjevich, and Alexandr Sergeevich Inozemtcev. "Preparation and Research of the High-Strength Lightweight Concrete Based on Hollow Microspheres." Advanced Materials Research 746 (August 2013): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amr.746.285.

Full text
Abstract:
The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensional modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the propose
APA, Harvard, Vancouver, ISO, and other styles
32

Oh, Bo Hwan, Hong C. Rhim, and Hyo Seon Park. "Effect of Confining Pressure on Modeling High Early Strength Concrete under Uniaxial Loading." Key Engineering Materials 321-323 (October 2006): 367–70. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.367.

Full text
Abstract:
Better understanding of concrete behavior is beneficial to the determination of concrete strength and detection of cracking using nondestructive testing techniques such as ultrasonic and acoustic emission. For advanced nondestructive evaluation of high early strength concrete under triaxial compression loading, stress-strain relationship in axial as well as in radial directions needs to be described in explicit form. This paper presents empirical models developed for high early strength concrete under active confinement to explore the effect of confining pressure. Empirical model for axial str
APA, Harvard, Vancouver, ISO, and other styles
33

A.M. Mhamoud, Hassan, and Jia Yanmin. "Effect of different additives on high temperatures of concrete." Journal of Structural Fire Engineering 9, no. 2 (June 11, 2018): 161–70. http://dx.doi.org/10.1108/jsfe-01-2017-0021.

Full text
Abstract:
Purpose This study aims to investigate the effectiveness of different additives (individual effects) in improving the strength of concrete to resist temperatures of up to 60ºC. Design/methodology/approach In all, 13 different mixtures with a constant water/binder ratio of 0.36 and grade M40 were prepared by using ordinary Portland concrete alone, or with partial replacement by fly ash (FA), blast-furnace slag, silica fume (SF) and a combination of all three. After 7 and 28 days under water, their strength and residual strength were measured. Findings The results of testing revealed that the ad
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Cao, and Wang Qing Gao. "Experimental Study on Rebound Curve of High-Strength Concrete." Key Engineering Materials 881 (April 2021): 137–41. http://dx.doi.org/10.4028/www.scientific.net/kem.881.137.

Full text
Abstract:
As the application of high-strength concrete in civil engineering becomes more and more extensive in our country, it needs to cooperate with the popularization and application of new high-strength concrete technology so as to solve the practical problems of high-strength concrete in the engineering application of the strength detection and master the national strength measurement curve of high-strength concrete. A representative commercial concrete manufacturer in Guangzhou was selected for the detection accuracy of this area. And the general raw materials in Guangzhou were used to make concre
APA, Harvard, Vancouver, ISO, and other styles
35

Stepanova, V. F., G. V. Chehniy, I. M. Parshina, S. A. Orekhov, and A. I. Kruglov. "Study into the freeze-thaw/ frost-salt resistance of high-strength B60–B100 concrete." Bulletin of Science and Research Center of Construction 33, no. 2 (April 19, 2022): 183–93. http://dx.doi.org/10.37538/2224-9494-2022-2(33)-183-193.

Full text
Abstract:
Introduction. The development of the Arctic Region and oil and gas fields in the North Atlantic Ocean leads to an increase in the production of high-strength concrete structures. Thus, it is becoming increasingly vital to make such low-permeability concretes more freeze-thaw resistant.Aim. To conduct experimental studies for obtaining reliable data required to develop a standardized approach to the normalization of freeze-thaw / frost-salt resistance parameters characterizing high-strength concretes.Materials and methods. The study was performed using concretes of eight compositions (B60–B100
APA, Harvard, Vancouver, ISO, and other styles
36

Varona, Francisco B., Francisco Baeza-Brotons, Antonio J. Tenza-Abril, F. Javier Baeza, and Luis Bañón. "Residual Compressive Strength of Recycled Aggregate Concretes after High Temperature Exposure." Materials 13, no. 8 (April 23, 2020): 1981. http://dx.doi.org/10.3390/ma13081981.

Full text
Abstract:
Sustainability requirements are gaining importance in the construction industry, which needs to take specific measures in the design and construction of concrete structures. The use of recycled aggregates in concrete may be of special interest. Recycling a construction waste will close the life cycle of the original materials (e.g., concrete). Thus, environmental benefits would come from the lower waste generation, and from a lower necessity of raw materials for new structures. The current Spanish code for structural concrete considers the use of recycled aggregates in replacement rates up to
APA, Harvard, Vancouver, ISO, and other styles
37

KUTSYK, Olena, and Oleksandr ZHURAVSKYI. "EXPERIMENTAL AND THEORETICAL STUDIES OF REINFORCED CONCRETE BENDING ELEMENTS MADE OF HIGH-STRENGTH CONCRETE." Building constructions. Theory and Practice, no. 9 (December 28, 2021): 87–93. http://dx.doi.org/10.32347/2522-4182.9.2021.87-93.

Full text
Abstract:
The use of quality materials is necessary for the manufacture of load-bearing reinforced concrete structures that are subject to heavy loads. To meet such requirements, it is necessary to use high-strength concrete, which has high compressive strength, water and gas tightness, corrosion resistance due to its dense structure. The use of high-strength concrete makes it possible to reduce the cross-sectional dimensions of structures, thereby reducing the weight of structures compared to structures of traditional classes of concrete.The results of experimental and theoretical researches of work of
APA, Harvard, Vancouver, ISO, and other styles
38

Rizkiasari, Anggia Eta, and Abdul Rouf. "Analisis Hubungan Kecepatan Gelombang Dengan Kuat Tekan Beton Menggunakan Metode UPV." IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) 10, no. 1 (April 30, 2020): 11. http://dx.doi.org/10.22146/ijeis.33414.

Full text
Abstract:
Until now the use of concrete as a building material is still widely used for building structures. It is important to do concrete compressive strength testing as one of the factors to know the quality of a concrete. NDT (Non-Destructive Testing) is a method of solid quality testing without damaging the object. Testing with the NDT method is considered more efficient than the destructive test method. One method for performing NDT testing is by utilizing UPV (Ultrasonic Pulse Velocity).UPV is a method for estimating concrete compressive strength based on the ultrasonic pulse velocity relationshi
APA, Harvard, Vancouver, ISO, and other styles
39

Hosseini Mehrab, Alireza, Seyedmahdi Amirfakhrian, and M. Reza Esfahani. "Fracture characteristics of various concrete composites containing polypropylene fibers through five fracture mechanics methods." Materials Testing 65, no. 1 (January 1, 2023): 10–32. http://dx.doi.org/10.1515/mt-2022-0210.

Full text
Abstract:
Abstract This paper investigates and compares the experimental results of fracture characteristics in various polypropylene fiber-reinforced concretes (high strength concrete, lightweight concrete, and engineered cementitious composite) on 90 three-point bend (notched and un-notched) beams. Five widely used fracture mechanics testing methods, such as work of fracture method, stress-displacement curve method, size effect method, J integral method, and ASTM E399, were used to investigate the fracture behavior. Results have demonstrated that fracture energy and fracture toughness improved as the
APA, Harvard, Vancouver, ISO, and other styles
40

Huang, Peng Fei. "Patent Analysis of Concrete Testing Technology." Key Engineering Materials 726 (January 2017): 120–24. http://dx.doi.org/10.4028/www.scientific.net/kem.726.120.

Full text
Abstract:
Discover Patent existing concrete performance test technology at home and abroad in the field of analysis of the existing concrete performance test technical features, difficulties and trends, noted that the current domestic patent technology in concrete performance test encountered utilization, protection and disputes, high durability and lightweight concrete and avoid patent risk recommendations for the structure to adapt to the development of the next building needs and provide research and development of high strength.
APA, Harvard, Vancouver, ISO, and other styles
41

Lee, Ming Gin, Yung Chih Wang, Wan Xuan Xiao, Ming Ju Lee, and Tuz Yuan Huang. "Effect of CO2 Curing on the Strength of High Strength Pervious Concrete." Key Engineering Materials 846 (June 2020): 207–12. http://dx.doi.org/10.4028/www.scientific.net/kem.846.207.

Full text
Abstract:
This study was conducted to assess the effect of CO2 curing on the compressive strength of high strength pervious concrete. The factors studied to evaluate compressive strength of concrete on CO2 curing pressure, curing time, and age of specimen at testing. Three Aggregate sizes, three CO2 curing pressures, three CO2 curing time, and three testing ages were used in this investigation. The research tried to produce a high strength pervious concrete and use carbon dioxide for curing to find out whether it could enhance the compressive strength. The results show that the compressive strength of t
APA, Harvard, Vancouver, ISO, and other styles
42

Yue, Zhong Wen, Hui Zhang, and Bo Yang Dou. "Industrial Test on Outer Frozen Shaft Wall of High Strength and High Performance Concrete." Advanced Materials Research 179-180 (January 2011): 569–74. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.569.

Full text
Abstract:
To study the industrial technology for application of the C100 High strength and high performance concrete which is in freezing shaft lining of thick overburden, the industrial test of the shaft wall of high strength and high performance concrete is carried out under the engineering background of auxiliary shaft in Yuncheng coal mine of Juye coal mining area in Shandong Province. The verified laboratory testing results comported with the results of industrial technology from macro-mechanics, failure fractal, resultant morphology and pore characteristics. And the quality control system of high
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Jiantao, and Qing Sun. "Cyclic testing of Q690 circular high-strength concrete-filled thin-walled steel tubular columns." Advances in Structural Engineering 22, no. 2 (August 14, 2018): 444–58. http://dx.doi.org/10.1177/1369433218790769.

Full text
Abstract:
Under seismic action, the severe damage in critical regions of structures could be ascribed to the cumulative damage caused by cyclic loading. This article describes an investigation of the hysteresis behaviour of Q690 circular high-strength concrete-filled thin-walled steel tubular columns with out-of-code diameter-to-thickness ratios. A total of eight specimens were tested under constant axial compression and cyclic lateral loading. The study results of phase I testing consisting of a benchmark test were summarized to examine the seismic behaviour under standard loading, and those of the pha
APA, Harvard, Vancouver, ISO, and other styles
44

Siregar, Atur P. N. "Experimental investigation of the flexural ductility of singly reinforced concrete beam using normal and high strength concrete." Journal of Sustainable Engineering: Proceedings Series 1, no. 2 (September 30, 2019): 218–24. http://dx.doi.org/10.35793/joseps.v1i2.30.

Full text
Abstract:
This paper discusses and reports based on the experimental investigation of the flexural ductility of singly reinforced normal strength and high strength concrete beams. Compressive concrete strength of 40 and 95 MPa were employed to create singly reinforced normal strength and high strength concrete beams, respectively. Fourteen samples made of normal and high strength concrete were engaged to observe the flexural ductility behaviour of beams on the basis of four point bend testing. Analysis on the basis of the flexural cracking, ultimate failure and curvature ductility were carried out to de
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Feng, Gui Xuan Chen, and Li Juan Li. "Performance of Rubberized High Strength Concrete after Fire." Advanced Materials Research 163-167 (December 2010): 1403–8. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1403.

Full text
Abstract:
The effects of recycled rubber powder on working abilities, density and compressive strength of high strength concrete (HSC) at room temperature were studied in this paper. The characteristics of rubberized high strength concrete (RHSC) after fire was investigated by surface observation, weight loss and retained strength testing. The sieve number of rubber powder used in test is No.40 (420μm), No.60 (250µm) and No.80 (178µm), and the content of rubber powder filled in RHSC is 1%, 2%, 3% and 4% with respect to cementation material respectively. Test results show that the increase in rubber powd
APA, Harvard, Vancouver, ISO, and other styles
46

Ali, A., Z. Soomro, S. Iqbal, N. Bhatti, and A. F. Abro. "Prediction of Corner Columns’ Load Capacity Using Composite Material Analogy." Engineering, Technology & Applied Science Research 8, no. 2 (April 19, 2018): 2745–49. http://dx.doi.org/10.48084/etasr.1879.

Full text
Abstract:
There are numerous reasons for which concrete has become the most widely used construction material in buildings, one of them being its availability in different types, such as fiber-reinforced, lightweight, high strength, conventional and self-compacting concrete. This advantage is specially realized in high-rise building construction, where common construction practice is to use concretes of different types or strength classes in slabs and columns. Columns in such structures are generally made from concrete which is higher in compressive strength than the one used in floors or slabs. This ra
APA, Harvard, Vancouver, ISO, and other styles
47

Dvořák, Richard, Zdeněk Chobola, and Ivo Kusák. "Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance." MATEC Web of Conferences 219 (2018): 03003. http://dx.doi.org/10.1051/matecconf/201821903003.

Full text
Abstract:
The paper is focused on non-destructive measurement of high temperature degraded concrete test specimens of three mixtures different by the use of coarse aggregate. Testing is done by ultrasonicpulse velocitymethod and Impact-Echo method. Non-destructive results are compared with destructive tests. Ultrasonic pulse velocity, dominant resonance frequency and acoustic impedance are discussed and compared with changes in density, cubic compressive strength, and tensile strength of concrete. The paper suggests possible assessment of degraded concrete by the change in acoustic impedance dependent o
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Guan Guo, Guo Rong Zhang, Yun Sheng Zhang, and Lu Lu. "Study on Tensile Creep Characteristics of High Strength Concrete." Applied Mechanics and Materials 835 (May 2016): 535–41. http://dx.doi.org/10.4028/www.scientific.net/amm.835.535.

Full text
Abstract:
A set of concrete tensile creep testing apparatus was constructed. The tensile creep characteristics of concrete under different loading ages (1d, 3d and 7d), different water-binder ratio (0.29, 0.33 and 0.37) and different fly ash proportion (0%, 20% and 40%) were researched. The results show that tensile creep increases with increasing of water-binder ratio obviously as well as with decreasing of loading ages. The tensile creep is inhibited by addition of fly ash, and the inhibition effect increases with the increase of fly ash proportion. Free shrinkage is counteracted 42%~62% by tensile cr
APA, Harvard, Vancouver, ISO, and other styles
49

Kadam, Shriganesh Shantikumar, V. V. Karjinni, and C. S. Jarali. "Prediction of Fiber Reinforced Concrete Strength Properties by Micromechanics Method." Civil Engineering Journal 5, no. 1 (January 27, 2019): 200. http://dx.doi.org/10.28991/cej-2019-03091238.

Full text
Abstract:
High strength steel fiber reinforced concrete (HSSFRC) was prepared with the help of steel fiber. 0.5%, 1.0%, and 1.5% steel fiber by volume of concrete specimen was used in concrete for present investigation. Compressive strength test and flexural strength test were conducted on cubical and prismatic specimens respectively.The main objective of the research work is to validate the experimental out comes by a numerical technique such as micromechanics approach. A high strength steel fiber reinforced concrete whose compressive strength is greater than 60 N/mm2 was prepared and tested on concret
APA, Harvard, Vancouver, ISO, and other styles
50

Del Savio, Alexandre Almeida, Darwin La Torre, and Juan P. Cedrón. "Experimental Volume Incidence Study and the Relationship of Polypropylene Macrofiber Slenderness to the Mechanical Strengths of Fiber-Reinforced Concretes." Applied Sciences 12, no. 18 (September 11, 2022): 9126. http://dx.doi.org/10.3390/app12189126.

Full text
Abstract:
An experimental study was conducted to examine the mechanical strengths of concretes with straight high-strength knurled polypropylene macrofibers. Incidences of concrete mechanical strengths were determined for three different fiber dosages and lengths. In addition, compressive, indirect-splitting-test tensile, and flexural strengths were determined through testing. The results showed no statistically significant correlation between the volume and length of fibers with the compressive strength of polypropylene fiber-reinforced concrete (PPFRC). However, there was a statistically significant c
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!