Academic literature on the topic 'High Throughput Data Storage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High Throughput Data Storage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High Throughput Data Storage"
Amin, A., B. Bockelman, J. Letts, T. Levshina, T. Martin, H. Pi, I. Sfiligoi, M. Thomas, and F. Wüerthwein. "High Throughput WAN Data Transfer with Hadoop-based Storage." Journal of Physics: Conference Series 331, no. 5 (December 23, 2011): 052016. http://dx.doi.org/10.1088/1742-6596/331/5/052016.
Full textJararweh, Yaser, Ola Al-Sharqawi, Nawaf Abdulla, Lo'ai Tawalbeh, and Mohammad Alhammouri. "High-Throughput Encryption for Cloud Computing Storage System." International Journal of Cloud Applications and Computing 4, no. 2 (April 2014): 1–14. http://dx.doi.org/10.4018/ijcac.2014040101.
Full textSardaraz, Muhammad, Muhammad Tahir, and Ataul Aziz Ikram. "Advances in high throughput DNA sequence data compression." Journal of Bioinformatics and Computational Biology 14, no. 03 (June 2016): 1630002. http://dx.doi.org/10.1142/s0219720016300021.
Full textRice, William J., Anchi Cheng, Sargis Dallakyan, Swapnil Bhatkar, Shaker Krit, Edward T. Eng, Bridget Carragher, and Clinton S. Potter. "Strategies for Data Flow and Storage for High Throughput, High Resolution Cryo-EM Data Collection." Microscopy and Microanalysis 25, S2 (August 2019): 1394–95. http://dx.doi.org/10.1017/s1431927619007700.
Full textAlbayrak, Levent, Kamil Khanipov, George Golovko, and Yuriy Fofanov. "Broom: application for non-redundant storage of high throughput sequencing data." Bioinformatics 35, no. 1 (July 13, 2018): 143–45. http://dx.doi.org/10.1093/bioinformatics/bty580.
Full textHsi-Yang Fritz, M., R. Leinonen, G. Cochrane, and E. Birney. "Efficient storage of high throughput DNA sequencing data using reference-based compression." Genome Research 21, no. 5 (January 18, 2011): 734–40. http://dx.doi.org/10.1101/gr.114819.110.
Full textCaspart, René, Max Fischer, Manuel Giffels, Ralf Florian von Cube, Christoph Heidecker, Eileen Kuehn, Günter Quast, Andreas Heiss, and Andreas Petzold. "Setup and commissioning of a high-throughput analysis cluster." EPJ Web of Conferences 245 (2020): 07007. http://dx.doi.org/10.1051/epjconf/202024507007.
Full textZhang, Qi, Yan-yun Han, Zhong-bin Su, Jun-long Fang, Zhong-qiang Liu, and Kai-yi Wang. "A storage architecture for high-throughput crop breeding data based on improved blockchain technology." Computers and Electronics in Agriculture 173 (June 2020): 105395. http://dx.doi.org/10.1016/j.compag.2020.105395.
Full textEt. al., Pruthvi Raj Venkatesh,. "Integrated Geo Cloud Solution for Seismic Data Processing." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (March 28, 2021): 589–604. http://dx.doi.org/10.17762/itii.v9i2.392.
Full textAndrian, Kim, and Ju. "A Distributed File-Based Storage System for Improving High Availability of Space Weather Data." Applied Sciences 9, no. 23 (November 21, 2019): 5024. http://dx.doi.org/10.3390/app9235024.
Full textDissertations / Theses on the topic "High Throughput Data Storage"
Roguski, Łukasz 1987. "High-throughput sequencing data compression." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/565775.
Full textGràcies als avenços en el camp de les tecnologies de seqüenciació, en els darrers anys la recerca biomèdica ha viscut una revolució, que ha tingut com un dels resultats l'explosió del volum de dades genòmiques generades arreu del món. La mida típica de les dades de seqüenciació generades en experiments d'escala mitjana acostuma a situar-se en un rang entre deu i cent gigabytes, que s'emmagatzemen en diversos arxius en diferents formats produïts en cada experiment. Els formats estàndards actuals de facto de representació de dades genòmiques són en format textual. Per raons pràctiques, les dades necessiten ser emmagatzemades en format comprimit. En la majoria dels casos, aquests mètodes de compressió es basen en compressors de text de caràcter general, com ara gzip. Amb tot, no permeten explotar els models d'informació especifícs de dades de seqüenciació. És per això que proporcionen funcionalitats limitades i estalvi insuficient d'espai d'emmagatzematge. Això explica per què operacions relativament bàsiques, com ara el processament, l'emmagatzematge i la transferència de dades genòmiques, s'han convertit en un dels principals obstacles de processos actuals d'anàlisi. Per tot això, aquesta tesi se centra en mètodes d'emmagatzematge i compressió eficients de dades generades en experiments de sequenciació. En primer lloc, proposem un compressor innovador d'arxius FASTQ de propòsit general. A diferència de gzip, aquest compressor permet reduir de manera significativa la mida de l'arxiu resultant del procés de compressió. A més a més, aquesta eina permet processar les dades a una velocitat alta. A continuació, presentem mètodes de compressió que fan ús de l'alta redundància de seqüències present en les dades de seqüenciació. Aquests mètodes obtenen la millor ratio de compressió d'entre els compressors FASTQ del marc teòric actual, sense fer ús de cap referència externa. També mostrem aproximacions de compressió amb pèrdua per emmagatzemar dades de seqüenciació auxiliars, que permeten reduir encara més la mida de les dades. En últim lloc, aportem un sistema flexible de compressió i un format de dades. Aquest sistema fa possible generar de manera semi-automàtica solucions de compressió que no estan lligades a cap mena de format específic d'arxius de dades genòmiques. Per tal de facilitar la gestió complexa de dades, diversos conjunts de dades amb formats heterogenis poden ser emmagatzemats en contenidors configurables amb l'opció de dur a terme consultes personalitzades sobre les dades emmagatzemades. A més a més, exposem que les solucions simples basades en el nostre sistema poden obtenir resultats comparables als compressors de format específic de l'estat de l'art. En resum, les solucions desenvolupades i descrites en aquesta tesi poden ser incorporades amb facilitat en processos d'anàlisi de dades genòmiques. Si prenem aquestes solucions conjuntament, aporten una base sòlida per al desenvolupament d'aproximacions completes encaminades a l'emmagatzematge i gestió eficient de dades genòmiques.
Kalathur, Ravi Kiran Reddy. "An integrated systematic approach for storage, analysis and visualization of gene expression data from neuronal tissues acquired through high-throughput techniques." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/KALATHUR_Ravi_Kiran_Reddy_2008.pdf.
Full textLe travail présenté dans ce manuscrit concerne différents aspects de l'analyse des données d'expression de gènes, qui englobe l'utilisation de méthodes statistiques et de systèmes de stockage et de visualisation, pour exploiter et extraire des informations pertinentes à partir de grands volumes de données. Durant ma thèse j'ai eu l'opportunité de travailler sur ces différents aspects, en contribuant en premier lieu aux tests de nouvelles approches de classification et de méta-analyses à travers la conception d'applications biologiques, puis dans le développement de RETINOBASE (http://alnitak. U-strasbg. Fr/RetinoBase/), une base de données relationnelle qui permet le stockage et l'interrogation performante de données de transcriptomique et qui représente la partie majeure de mon travail
Nicolae, Bogdan. "BlobSeer : towards efficient data storage management for large-scale, distributed systems." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00552271.
Full textLjung, Patric. "Visualization of Particle In Cell Simulations." Thesis, Linköping University, Department of Science and Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2340.
Full textA numerical simulation case involving space plasma and the evolution of instabilities that generates very fast electrons, i.e. approximately at half of the speed of light, is used as a test bed for scientific visualisation techniques. A visualisation system was developed to provide interactive real-time animation and visualisation of the simulation results. The work focuses on two themes and the integration of them. The first theme is the storage and management of the large data sets produced. The second theme deals with how the Visualisation System and Visual Objects are tailored to efficiently visualise the data at hand.
The integration of the themes has resulted in an interactive real-time animation and visualisation system which constitutes a very powerful tool for analysis and understanding of the plasma physics processes. The visualisations contained in this work have spawned many new possible research projects and provided insight into previously not fully understood plasma physics phenomena.
Carpen-Amarie, Alexandra. "BlobSeer as a data-storage facility for clouds : self-Adaptation, integration, evaluation." Thesis, Cachan, Ecole normale supérieure, 2011. http://www.theses.fr/2011DENS0066/document.
Full textThe emergence of Cloud computing brings forward many challenges that may limit the adoption rate of the Cloud paradigm. As data volumes processed by Cloud applications increase exponentially, designing efficient and secure solutions for data management emerges as a crucial requirement. The goal of this thesis is to enhance a distributed data-management system with self-management capabilities, so that it can meet the requirements of the Cloud storage services in terms of scalability, data availability, reliability and security. Furthermore, we aim at building a Cloud data service both compatible with state-of-the-art Cloud interfaces and able to deliver high-throughput data storage. To meet these goals, we proposed generic self-awareness, self-protection and self-configuration components targeted at distributed data-management systems. We validated them on top of BlobSeer, a large-scale data-management system designed to optimize highly-concurrent data accesses. Next, we devised and implemented a BlobSeer-based file system optimized to efficiently serve as a storage backend for Cloud services. We then integrated it within a real-world Cloud environment, the Nimbus platform. The benefits and drawbacks of using Cloud storage for real-life applications have been emphasized in evaluations that involved data-intensive MapReduce applications and tightly-coupled, high-performance computing applications
Kalathur, Ravi Kiran Reddy Poch Olivier. "Approche systématique et intégrative pour le stockage, l'analyse et la visualisation des données d'expression génique acquises par des techniques à haut débit, dans des tissus neuronaux An integrated systematic approach for storage, analysis and visualization of gene expression data from neuronal tissues acquired through high-throughput techniques /." Strasbourg : Université Louis Pasteur, 2008. http://eprints-scd-ulp.u-strasbg.fr:8080/920/01/KALATHUR_R_2007.pdf.
Full textJin, Shuangshuang. "Integrated data modeling in high-throughput proteomices." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Fall2007/S_Jin_111907.pdf.
Full textCapparuccini, Maria. "Inferential Methods for High-Throughput Methylation Data." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/156.
Full textDurif, Ghislain. "Multivariate analysis of high-throughput sequencing data." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1334/document.
Full textThe statistical analysis of Next-Generation Sequencing data raises many computational challenges regarding modeling and inference, especially because of the high dimensionality of genomic data. The research work in this manuscript concerns hybrid dimension reduction methods that rely on both compression (representation of the data into a lower dimensional space) and variable selection. Developments are made concerning: the sparse Partial Least Squares (PLS) regression framework for supervised classification, and the sparse matrix factorization framework for unsupervised exploration. In both situations, our main purpose will be to focus on the reconstruction and visualization of the data. First, we will present a new sparse PLS approach, based on an adaptive sparsity-inducing penalty, that is suitable for logistic regression to predict the label of a discrete outcome. For instance, such a method will be used for prediction (fate of patients or specific type of unidentified single cells) based on gene expression profiles. The main issue in such framework is to account for the response to discard irrelevant variables. We will highlight the direct link between the derivation of the algorithms and the reliability of the results. Then, motivated by questions regarding single-cell data analysis, we propose a flexible model-based approach for the factorization of count matrices, that accounts for over-dispersion as well as zero-inflation (both characteristic of single-cell data), for which we derive an estimation procedure based on variational inference. In this scheme, we consider probabilistic variable selection based on a spike-and-slab model suitable for count data. The interest of our procedure for data reconstruction, visualization and clustering will be illustrated by simulation experiments and by preliminary results on single-cell data analysis. All proposed methods were implemented into two R-packages "plsgenomics" and "CMF" based on high performance computing
Zhang, Xuekui. "Mixture models for analysing high throughput sequencing data." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35982.
Full textBooks on the topic "High Throughput Data Storage"
Rodríguez-Ezpeleta, Naiara, Michael Hackenberg, and Ana M. Aransay. Bioinformatics for high throughput sequencing. New York, NY: Springer, 2012.
Find full textGeurts, Werner, Francky Catthoor, Serge Vernalde, and Hugo de Man. Accelerator Data-Path Synthesis for High-Throughput Signal Processing Applications. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8720-4.
Full textlibrary, Wiley online, ed. Systems biology in psychiatric research: From high-throughput data to mathematical modeling. Weinheim: Wiley-VCH, 2010.
Find full textIntroduction to clustering large and high-dimensional data. Cambridge: Cambridge University Press, 2007.
Find full textYang, Po-sŏk. Twaeji yujŏnch'e taeryang yŏmgi sŏyŏl punsŏk mit yuyong yujŏnja palgul =: High-throughput DNA sequence analysis and identification of trait genes in pigs. [Kyŏnggi-do Suwŏn-si]: Nongch'on Chinhŭngch'ŏng, 2009.
Find full textJ, Franklin Michael. Client Data Caching: A Foundation for High Performance Object Database Systems. Boston, MA: Springer US, 1996.
Find full textRishe, Naphtali. Storage and visualization of spatial data in a high-performance semantic database system: Technical report #95-15. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textJames, Quinn. High-tech handicapping in the information age: An information management approach to the thoroughbreds. New York: W. Morrow, 1986.
Find full textData-intensive computing: Architectures, algorithms, and applications. Cambridge: Cambridge University Press, 2013.
Find full textPolicy Research Project on Improving Postsecondary Education and Labor Market Transitions for Central Texas High School Students, ed. Beyond the numbers: Improving postsecondary success through a central Texas high school data center. Austin, TX: Lyndon B. Johnson School of Public Affairs, University of Texas at Austin, 2006.
Find full textBook chapters on the topic "High Throughput Data Storage"
Nicolae, Bogdan. "High Throughput Data-Compression for Cloud Storage." In Data Management in Grid and Peer-to-Peer Systems, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15108-8_1.
Full textZheng, Liang, Changting Li, Zongbin Liu, Lingchen Zhang, and Cunqing Ma. "Implementation of High Throughput XTS-SM4 Module for Data Storage Devices." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 271–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01704-0_15.
Full textHabyarimana, Ephrem, and Sofia Michailidou. "Genomics Data." In Big Data in Bioeconomy, 69–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_6.
Full textMostolizadeh, Reihaneh, Andreas Dräger, and Neema Jamshidi. "Insights into Dynamic Network States Using Metabolomic Data." In High-Throughput Metabolomics, 243–58. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_15.
Full textReinhold, Dominik, Harrison Pielke-Lombardo, Sean Jacobson, Debashis Ghosh, and Katerina Kechris. "Pre-analytic Considerations for Mass Spectrometry-Based Untargeted Metabolomics Data." In High-Throughput Metabolomics, 323–40. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_20.
Full textYao, Linxing, Amy M. Sheflin, Corey D. Broeckling, and Jessica E. Prenni. "Data Processing for GC-MS- and LC-MS-Based Untargeted Metabolomics." In High-Throughput Metabolomics, 287–99. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_18.
Full textFarrusseng, D., L. Baumes, and C. Mirodatos. "Data Management for Combinatorial Heterogeneous Catalysis: Methodology and Development of Advanced Tools." In High-Throughput Analysis, 551–79. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8989-5_25.
Full textGubler, Hanspeter. "High-Throughput Screening Data Analysis." In Nonclinical Statistics for Pharmaceutical and Biotechnology Industries, 83–139. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23558-5_5.
Full textAgrawal, Shubhra, Sahil Kumar, Raghav Sehgal, Sabu George, Rishabh Gupta, Surbhi Poddar, Abhishek Jha, and Swetabh Pathak. "El-MAVEN: A Fast, Robust, and User-Friendly Mass Spectrometry Data Processing Engine for Metabolomics." In High-Throughput Metabolomics, 301–21. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_19.
Full textBiondi, Sherri A., Jeffrey A. Wolk, and Anne R. Kopf-Sill. "High-Density Reagent Storage Arrays for High-Throughput Screening." In Micro Total Analysis Systems 2000, 459–62. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2264-3_107.
Full textConference papers on the topic "High Throughput Data Storage"
Olkkonen, Juuso, Kari Kataja, Janne Aikio, and Dennis G. Howe. "Study of high throughput aperture for near field optical data storage." In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tud3.
Full textEndo, Kousuke, Masaru Takai, Kazuma Kurihara, and Kenya Goto. "Readout Measurement with High Throughput GaP Probe Array for Two-dimensional Optical Data Storage Head." In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.tue40.
Full textKim, Eun-Kyoung, Sung-Q. Lee, Sang-Choon Ko, and Kang-Ho Park. "Cantilever with High Throughput Multiaperture for Near-Field Optical Data Storage." In International Symposium on Optical Memory and Optical Data Storage. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/isom_ods.2005.wp24.
Full textKoets, Michael A., Larry T. McDaniel, Miles R. Darnell, and Jennifer L. Alvarez. "Data access architectures for high throughput, high capacity flash memory storage systems." In 2017 IEEE Aerospace Conference. IEEE, 2017. http://dx.doi.org/10.1109/aero.2017.7943824.
Full textKalim, Umar, Mark Gardner, Eric Brown, and Wu-chun Feng. "Abstract: Cascaded TCP: BIG Throughput for BIG DATA Applications in Distributed HPC." In 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC). IEEE, 2012. http://dx.doi.org/10.1109/sc.companion.2012.229.
Full textKalim, Umar, Mark Gardner, Eric Brown, and Wu-chun Feng. "Poster: Cascaded TCP: BIG Throughput for BIG DATA Applications in Distributed HPC." In 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC). IEEE, 2012. http://dx.doi.org/10.1109/sc.companion.2012.230.
Full textSarood, Osman, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. "Maximizing Throughput of Overprovisioned HPC Data Centers Under a Strict Power Budget." In SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014. http://dx.doi.org/10.1109/sc.2014.71.
Full textMalensek, M., S. L. Pallickara, and S. Pallickara. "Galileo: A Framework for Distributed Storage of High-Throughput Data Streams." In 2011 IEEE 4th International Conference on Utility and Cloud Computing (UCC 2011). IEEE, 2011. http://dx.doi.org/10.1109/ucc.2011.13.
Full textHuo, Zhisheng, Limin Xiao, Qiaoling Zhong, Shupan Li, Ang Li, Li Ruan, Kelong Liu, Yuanyuan Zang, Pei Wang, and Zheqi Lu. "Hybrid Storage Throughput Allocation Among Multiple Clients in Heterogeneous Data Center." In 2015 IEEE 17th International Conference on High-Performance Computing and Communications; 2015 IEEE 7th International Symposium on Cyberspace Safety and Security; and 2015 IEEE 12th International Conference on Embedded Software and Systems. IEEE, 2015. http://dx.doi.org/10.1109/hpcc-css-icess.2015.49.
Full textAfonso, Nuno, Manuel Bravo, and Luis Rodrigues. "Combining High Throughput and Low Migration Latency for Consistent Data Storage on the Edge." In 2020 29th International Conference on Computer Communications and Networks (ICCCN). IEEE, 2020. http://dx.doi.org/10.1109/icccn49398.2020.9209720.
Full textReports on the topic "High Throughput Data Storage"
Matthews, W. Achieving High Data Throughput in Research Networks. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833103.
Full textBulaevskaya, V., and A. P. Sales. Adaptive Sampling for High Throughput Data Using Similarity Measures. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1184186.
Full textLangston, Michael A. Scalable Computational Methods for the Analysis of High-Throughput Biological Data. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1050046.
Full textNeifeld, Mark A., and Richard W. Ziolkowski. Optically Addressed Nanostructures for High Density Data Storage. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada440105.
Full textAnderson, Ken. Low-Latency Ultra-High Capacity Holographic Data Storage Archive Library. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1164637.
Full textRishe, Naphtali, David Barton, and Mario Sanchez. Storage and Visualization of Spatial Data in a High-Performance Semantic Database System. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada308598.
Full textTin Aye. High Capacity High Speed Optical Data Storage System Based on Diffraction-Free Nanobeam. Final Report, 09-02-98 to 03-17-99. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/755982.
Full textRangaswami, Raju. Department of Energy Project ER25739 Final Report QoS-Enabled, High-performance Storage Systems for Data-Intensive Scientific Computing. Office of Scientific and Technical Information (OSTI), May 2009. http://dx.doi.org/10.2172/1046919.
Full textIdakwo, Gabriel, Sundar Thangapandian, Joseph Luttrell, Zhaoxian Zhou, Chaoyang Zhang, and Ping Gong. Deep learning-based structure-activity relationship modeling for multi-category toxicity classification : a case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41302.
Full textHans Gougar. Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/974765.
Full text