Academic literature on the topic 'High Velocity Air-Fuel (HVAF)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High Velocity Air-Fuel (HVAF).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High Velocity Air-Fuel (HVAF)"
Szymański, Krzysztof, Marek Góral, Tadeusz Kubaszek, and Paulo Cyhlar Monteiro. "Microstructure of TBC Coatings Deposited by HVAF and PS-PVD Methods." Solid State Phenomena 227 (January 2015): 373–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.373.
Full textHulka, Iosif, Viorel Aurel Şerban, Kari Niemi, Petri Vuoristo, and Johannes Wolf. "Comparison of Structure and Wear Properties of Fine-Structured WC-CoCr Coatings Deposited by HVOF and HVAF Spraying Processes." Solid State Phenomena 188 (May 2012): 422–27. http://dx.doi.org/10.4028/www.scientific.net/ssp.188.422.
Full textMyalska, Hanna, Krzysztof Szymański, and Grzegorz Moskal. "Microstructure and Selected Properties of WC-Co-Cr Coatings Deposited by High Velocity Thermal Spray Processes." Solid State Phenomena 246 (February 2016): 117–22. http://dx.doi.org/10.4028/www.scientific.net/ssp.246.117.
Full textJoshi and Nylen. "Advanced Coatings by Thermal Spray Processes." Technologies 7, no. 4 (November 1, 2019): 79. http://dx.doi.org/10.3390/technologies7040079.
Full textZha, Bai Lin, Su Lei Qiao, Ding Yuan Huang, Wei He, Zhi Hong Zha, and Xiang Bin Li. "Study of Properties of Nanostructured and Conventional WC-12Co Coatings Deposited by HVO/AF." Advanced Materials Research 709 (June 2013): 166–71. http://dx.doi.org/10.4028/www.scientific.net/amr.709.166.
Full textCai, Mingwei, and Jun Shen. "Phase Transformation of High Velocity Air Fuel (HVAF)-Sprayed Al-Cu-Fe-Si Quasicrystalline Coating." Metals 10, no. 6 (June 24, 2020): 834. http://dx.doi.org/10.3390/met10060834.
Full textBaiamonte, Lidia, Stefan Björklund, Antonio Mulone, Uta Klement, and Shrikant Joshi. "Carbide-laden coatings deposited using a hand-held high-velocity air-fuel (HVAF) spray gun." Surface and Coatings Technology 406 (January 2021): 126725. http://dx.doi.org/10.1016/j.surfcoat.2020.126725.
Full textLiu, Fuqiang, Zhiyong Li, Min Fang, and Hua Hou. "Numerical Analysis of the Activated Combustion High-Velocity Air-Fuel Spraying Process: A Three-Dimensional Simulation with Improved Gas Mixing and Combustion Mode." Materials 14, no. 3 (January 31, 2021): 657. http://dx.doi.org/10.3390/ma14030657.
Full textSALMAN, ASMA, BRIAN GABBITAS, PENG CAO, and DELIANG ZHANG. "TRIBOLOGICAL PROPERTIES OF Ti(Al,O)/Al2O3 COMPOSITE COATING BY THERMAL SPRAYING." International Journal of Modern Physics B 23, no. 06n07 (March 20, 2009): 1407–12. http://dx.doi.org/10.1142/s0217979209061019.
Full textGarfias Bulnes, Andrea, Vicente Albaladejo Fuentes, Irene Garcia Cano, and Sergi Dosta. "Understanding the Influence of High Velocity Thermal Spray Techniques on the Properties of Different Anti-Wear WC-Based Coatings." Coatings 10, no. 12 (November 26, 2020): 1157. http://dx.doi.org/10.3390/coatings10121157.
Full textDissertations / Theses on the topic "High Velocity Air-Fuel (HVAF)"
BERTILSSON, ERIK. "Identification of business cases for HVAFtechnology." Thesis, KTH, Industriell Management, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154568.
Full textSwerea KIMAB har nyligen investerat i en förbättrad teknik för termisk sprutning, High Velocity Air-Fule (HVAF). HVAF-tekniken har nyligen introducerats på marknaden och de tekniska egenskaperna har därmedinte undersökts grundligt eller jämförts med genskaperna för befintliga termiska spruttekniker. Arbetets syfte var att belysa hur och var den nya HVAFtekniken kan konkurrera med etablerade tekniker på områden i form av prestanda och kostnad. ndersökningen syftade även till att utreda om den nya tekniken kan medföra helt nya applikationsområden. En genomgång av befintliga tekniker var till en början nödvändig för att i slutändan kunna identifiera lämpliga användningsområden för HVAF-tekniken. Det finns en stor osäkerhet kring hur marknaden för HVAF ser ut idag, och hur den kan komma att utvecklas. Själva marknaden för termisk sprutning är i dagsläget begränsad, vilket innebär att det finns ett stort intresse kring att undersöka vilka önskemål och krav företag ställer på HVAF-tekniken för att den skall kunna konkurrera på marknaden. Utöver tidigare nämda delar av arbetet syftade det även till att identifiera vilka kunskaper och vilket stöd företagen önskar vid en eventuell övergång till termisk sprutning generellt. Följande forskningsfrågor har besvarats i arbetet. Vilka nya användningsområden möjliggör HVAF-tekniken för sett ur en teknisk och ekonomisk synvinkel? Vilka initiativ är nödvändiga för att öka användandet av termisk sprutning inom industrin? Empiriska studier, benchmarking, intervjuer och en enkätundersökning var de metoder som användes för arbetet. I rapporten presenteras en övergripande kunskapsbank för de vanligaste termiska sprutteknikerna, vilken omfattar en jämförelse av egenskaper och kostnader. Lämpliga användningsområden för HVAF-tekniken har identifierades och presenteras i rapporten. exempelvis som skydd mot höga temperaturer, korrosion och abrasion. Allmän brist på kunskap om termisk sprutning har identifierats som det främsta hindret mot ökad användning av tekniken i dagsläget.
Barth, Dominic. "Modelling and control of combustion in a high velocity air flame (HVAF) thermal spraying process." Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1266.
Full textRoy, Jean-Michel L. "Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20681.
Full textShrestha, Suman Kumar. "Corrosion and erosion-corrosion of High Velocity Oxy-Fuel (HVOF) sprayed NiCrSiB coatings." Thesis, University of Glasgow, 2000. http://theses.gla.ac.uk/2866/.
Full textLiu, Meimei. "Research and implementation of artificial neural networks models for high velocity oxygen fuel thermal spraying." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA003.
Full textIn the high velocity oxygen fuel (HVOF) spray process, the coating properties are sensitive to the characteristics of in-flight particles, which are mainly determined by the process parameters. Due to the complex chemical and thermodynamic reactions during the deposition procedure, obtaining a comprehensive multi-physical model or analytical analysis of the HVOF process is still a challenging issue. This study proposes to develop a robust methodology via artificial neural networks (ANN) to solve this problem for the HVOF sprayed NiCr-Cr3C2 coatings under different operating parameters.First, 40 sets of HVOF spray experiments were conducted and the coating properties were tested for analysis and to build up the data set for ANN models. The relationship among the process parameters, behaviors of in-flight particles, and coating properties were investigated from an initial view, which provided a preliminary understanding of the HVOF process and sprayed coatings. Even though the effect of process parameters on the behaviors of in-flight particles and thus on the coating’ properties can be roughly summarized, it is impossible to build up direct connections among them.Second, two ANN models were developed and implemented to predict coating’s performances (in terms of microhardness, porosity and wear rate) and to analyze the influence of operating parameters (stand-off distance, oxygen flow rate, and fuel flow rate) while considering the intermediate variables (temperature and velocity of in-flight particles). A detailed procedure for creating these two ANN models is presented, which encodes the implicitly physical phenomena governing the HVOF process. A set of additional experiments was also conducted to validate the reliability and accuracy of the ANN models. The results show that the developed implicit models can satisfy the prediction requirements. Clarifying the interrelationships between the spraying conditions, behaviors of in-flight particles, and the final coating performances will provide better control of the HVOF sprayed coatings. Additionally, mean impact value (MIV) analysis was conducted to quantitatively explore the relative significance of each input on outputs for improving the effectiveness of the predictions.Lastly, the well-trained ANN models were programmed and integrated into the homemade HVOF spray control system to realize an intelligent control system. With this system, the temperature and velocity of in-flight particles can be calculated by entering process parameters, and thereafter obtaining specific coating properties. A reverse ANN model was also integrated, which calculates process parameters based on the microhardness of the coating to guide the selection of the best parameters. This integration provides a preliminary idea for the construction of an intelligent control system for HVOF spray process and can be promoted to other thermal spray technologies.Overall, based on a large data set, this work not only intuitively analyzed the relationship among process parameters, behaviors of in-flight particles, and coating’s properties, but also provided a prediction method for the HVOF spray process and HVOF sprayed coatings via the optimized and well-trained ANN model. In addition, a prototype to realize an intelligent control system for HVOF spray process has also been suggested
Neale, James Richard Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Experimental and numerical investigation of noise generation from the expansion of high velocity HVAC flows on board ocean going fast ferries." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2006. http://handle.unsw.edu.au/1959.4/28371.
Full textKutschmann, Pia, Thomas Lindner, Kristian Börner, Ulrich Reese, and Thomas Lampke. "Effect of Adjusted Gas Nitriding Parameters on Microstructure and Wear Resistance of HVOF-Sprayed AISI 316L Coatings." MDPI AG, 2019. https://monarch.qucosa.de/id/qucosa%3A34775.
Full textRajagopalan, Srivatsan Vengeepuram. "Numerical analysis of a high velocity oxygen fuel (HVOF) process." Thesis, 2007. http://spectrum.library.concordia.ca/975504/1/MR34784.pdf.
Full textPereira, Aaron. "Investigation of Direct Injection Fuel Sprays in High Velocity Air Flows." Thesis, 2013. http://hdl.handle.net/10012/8007.
Full textBooks on the topic "High Velocity Air-Fuel (HVAF)"
Al-Abedi, G. S. A. High velocity oxy-fuel spraying (hvof) for the application of ceramic coatings. Manchester: UMIST, 1995.
Find full textBook chapters on the topic "High Velocity Air-Fuel (HVAF)"
Fiedler, Torben, Joachim Rösler, Martin Bäker, Felix Hötte, Christoph von Sethe, Dennis Daub, Matthias Haupt, Oskar J. Haidn, Burkard Esser, and Ali Gülhan. "Mechanical Integrity of Thermal Barrier Coatings: Coating Development and Micromechanics." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 295–307. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_19.
Full textTan, J. C., and M. S. J. Hashmi. "High velocity oxygen fuel (HVOF) thermal spray." In Current Advances in Mechanical Design and Production VI, 27–33. Elsevier, 1995. http://dx.doi.org/10.1016/b978-008042140-7/50004-4.
Full textCasteletti, L. C., A. Lombardi Neto, D. T. de Macedo, L. B. Cruvinel, and George Totten. "Stellite Superalloy Powder Deposition on 7075 Aluminum Alloy." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000303.
Full textLucian Toma, Stefan, Radu Armand Haraga, Daniela Lucia Chicet, Viorel Paleu, and Costica Bejinariu. "Hard Alloys with High Content of WC and TiC—Deposited by Arc Spraying Process." In Welding - Modern Topics [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94605.
Full textWood, Robert J. K., and Mandar R. Thakare. "Abrasion-Corrosion of Thermal Spray Coatings." In Materials Science and Engineering, 1265–92. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1798-6.ch050.
Full textConference papers on the topic "High Velocity Air-Fuel (HVAF)"
Löbel, Martin, Thomas Lindner, Thomas Mehner, Lisa-Marie Rymer, Thomas Lampke, Stefan Björklund, and Shrikant Joshi. "Microstructure and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by HVAF and HVOF." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0416.
Full textVaracalle, D. J., G. Irons, R. J. Lalumiere, W. D. Swank, and J. Lagerquist. "Modeling and Diagnostics of the Praxair HVAF Combustion Spray Process." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0347.
Full textKorobov, S., N. V. Lezhnin, A. V. Makarov, H. L. Alwan, V. I. Shumyakov, N. N. Soboleva, M. Antonov, and M. S. Deviatiarov. "The Cavitation Resistance of WC-10Co4Cr and WC-20CrC-7Ni HVAF Coatings." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0722.
Full textMatthews, S. J., and M. M. Hyland. "Statistical Optimization of HVAF Sprayed Cr3C2-NiCr Coatings for Minimizing Decarburization." In ITSC 2000, edited by Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0543.
Full textHearley, J. A., J. A. Little, and A. J. Sturgeon. "Oxidation Properties of NIAI Intermetallic Coatings Prepared by High Velocity Oxy-Fuel Thermal Spraying." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0089.
Full textLopez, A. R., B. Hassan, W. L. Oberkampf, R. A. Neiser, and T. J. Roemer. "Computational Fluid Dynamics Analysis of a Wire-Feed, High-Velocity Oxygen-Fuel (HVOF) Thermal Spray Torch." In ITSC 1996, edited by C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0531.
Full textVarga, M., L. Janka, M. Rodríguez Ripoll, L. M. Berger, S. Thiele, V. Matikainen, P. Vuoristo, L. Janka, and H. Ben Hamouda. "High Temperature Sliding of TiC Based Hardmetal Coatings Against TWIP Steel." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0278.
Full textSaad, Idris, and Saiful Bari. "Effect by Guide Vane Swirl and Tumble Device to Improve the Air-Fuel Mixing of Diesel Engine Running With Higher Viscous Fuels." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62297.
Full textFiala, Petr, and Karel Hajmrle. "Cobalt Based Antifretting Coatings." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23547.
Full textRusso, Dario, Andrea Scrivani, Gabriele Rizzi, Alessandro Lanzi, and Carlo Giolli. "eXclean®: A New Surface Preparation of Turbine Components for Deposition of MCrAlY Coatings With Super Clean Interface." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50685.
Full text