Academic literature on the topic 'High Voltage Cable Insulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High Voltage Cable Insulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High Voltage Cable Insulation"
Yahya, Muhammad Bin, and Muhammad Nazrolni Azmi Bin Izani. "Cable Test and Breakdown Voltage Determination of Joysense Cable Insulation." Indonesian Journal of Electrical Engineering and Computer Science 8, no. 1 (October 1, 2017): 177. http://dx.doi.org/10.11591/ijeecs.v8.i1.pp177-183.
Full textJörgens, Christoph, and Markus Clemens. "Electric Field and Temperature Simulations of High-Voltage Direct Current Cables Considering the Soil Environment." Energies 14, no. 16 (August 11, 2021): 4910. http://dx.doi.org/10.3390/en14164910.
Full textDiban, Bassel, and Giovanni Mazzanti. "The Effect of Insulation Characteristics on Thermal Instability in HVDC Extruded Cables." Energies 14, no. 3 (January 21, 2021): 550. http://dx.doi.org/10.3390/en14030550.
Full textHadi, Nabipour Afrouzi, Zulkurnain Abdul-Malek, Saeed Vahabi Mashak, and A. R. Naderipour. "Three-Dimensional Potential and Electric Field Distributions in HV Cable Insulation Containing Multiple Cavities." Advanced Materials Research 845 (December 2013): 372–77. http://dx.doi.org/10.4028/www.scientific.net/amr.845.372.
Full textLi, Chao, Lin Lin, and Weidong Qu. "Study on insulation performance optimization of EMU high-voltage equipment box." Journal of Physics: Conference Series 2195, no. 1 (February 1, 2022): 012040. http://dx.doi.org/10.1088/1742-6596/2195/1/012040.
Full textTarko, Rafał, Jakub Gajdzica, Wiesław Nowak, and Waldemar Szpyra. "Study of the Lightning Overvoltage Protection Effectiveness of High Voltage Mixed Overhead Cable Power Lines." Energies 14, no. 8 (April 20, 2021): 2329. http://dx.doi.org/10.3390/en14082329.
Full textFu, Wenjun, Ying Xu, and Yan Gao. "A Study on Insulation Monitoring Technology of High-Voltage Cables in Underground Coal Mines Based on Decision Tree." Computational Intelligence and Neuroscience 2022 (May 23, 2022): 1–14. http://dx.doi.org/10.1155/2022/2247017.
Full textNguen, Ty. "INDUCED VOLTAGES CREATED BY A HIGH-VOLTAGE CABLE." Modern Technologies and Scientific and Technological Progress 2020, no. 1 (June 16, 2020): 219–20. http://dx.doi.org/10.36629/2686-9896-2020-1-219-220.
Full textZarubin, V. S., G. N. Kuvyrkin, and I. Yu Savelyeva. "Temperature State of the Electrical Insulation Layer of a Superconducting DC Cable with Double-Sided Cooling." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (97) (August 2021): 71–85. http://dx.doi.org/10.18698/1812-3368-2021-4-71-85.
Full textJörgens, Christoph, and Markus Clemens. "Modeling the electric field at interfaces and surfaces in high-voltage cable systems." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 39, no. 5 (May 8, 2020): 1099–111. http://dx.doi.org/10.1108/compel-01-2020-0041.
Full textDissertations / Theses on the topic "High Voltage Cable Insulation"
Bialek, Thomas Owen. "Evaluation and modeling of high-voltage cable insulation using a high-voltage impulse." Diss., Mississippi State : Mississippi State University, 2005. http://library.msstate.edu/content/templates/?a=72.
Full textCariou-Saintemarie, Nathalie. "Initiation of electrical degradation in high voltage polymeric cable insulation : electroluminescence detection." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342808.
Full textAriffin, Azrul Mohd. "The measurement and modelling of electroluminescence in high voltage polymeric cable insulation materials." Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494683.
Full textFreye, Claudius [Verfasser], Frank [Akademischer Betreuer] Jenau, and Thomas [Gutachter] Leibfried. "Methoden und Aspekte zur Leitfähigkeitsanalyse von Isolationsmaterialien der Kabeltechnologie und zur Isolationskoordination für Systeme der Hochspannungsgleichstromübertragung (HGÜ) : Methods and aspects for conductivity analysis of insulating materials in cable technology and for insulation coordination in high-voltage direct current transmission (HVDC) systems / Claudius Freye ; Gutachter: Thomas Leibfried ; Betreuer: Frank Jenau." Dortmund : Universitätsbibliothek Dortmund, 2020. http://d-nb.info/1214887627/34.
Full textPallon, Love. "Polyethylene/metal oxide nanocomposites for electrical insulation in future HVDC-cables : probing properties from nano to macro." Doctoral thesis, KTH, Polymera material, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193591.
Full textNanokompositer av polyeten och metalloxidpartiklar anses vara möjliga material att använda i morgondagens isolationshölje till högspänningskablar för likström. För att nå en transmissionsspänning på 1 MV behövs isolationsmaterial som i jämförelse med dagens polyeten har lägre elektrisk ledningsförmåga, högre styrka mot elektriskt genomslag och som kan kontrollera ansamling av rymdladdningar. De senaste årens forskning har visat att kompositer av polyeten med nanopartiklar av metalloxider har potential att nå dessa egenskaper. I det här arbetet har kompositer av polyeten och nanopartiklar av MgO för elektrisk isolation producerats och karaktäriserats. Nanopartiklar av MgO har framställts från en vattenbaserad utfällning med efterföljande calcinering, vilket resulterade i polykristallina partiklar med en mycket stor specifik ytarea (167m2 g-1). MgO-nanopartiklarna ytmodifierades i n-heptan genom att kovalent binda oktyl(trietoxi)silan och oktadekyl(trimetoxi)silan till partiklarna för att skapa en hydrofob och skyddande yta. Extrudering av de ytmodifierade MgO nanopartiklarna tillsammans med polyeten resulterade i en utmärkt dispergering med jämnt fördelad partiklar i hela kompositen, vilket ska jämföras med de omodifierade partiklarna som till stor utsträckning bildade agglomerat i polymeren. Alla kompositer med låg fyllnadsgrad (1–3 vikt% MgO) visade upp till 100 gånger lägre elektrisk konduktivitet jämfört med värdet för ofylld polyeten. Vid högre koncentrationer av omodifierade MgO förbättrades inte de isolerande egenskaperna på grund av för stor andel agglomerat, medan kompositerna med de ytmodifierade fyllmedlen som var väl dispergerade behöll en kraftig reducerad elektrisk konduktivitet upp till 9 vikt% fyllnadshalt. Den minsta interaktionsradien för MgO-nanopartiklarna för att minska den elektriska konduktiviten i kompositerna fastställdes med bildanalys och simuleringar till ca 800 nm. Den teoretiskt beräknade interaktionsradien kompletterades med observation av en experimentell interaktionsradie genom att mäta laddningsfördelningen över en Al2O3-nanopartikle i en polyetenfilm med intermodulation (frekvens-mixning) elektrostatisk kraftmikroskop (ImEFM), vilket är en ny AFM-metod för att mäta ytpotentialer. Genom att lägga på en spänning på AFM-kantilevern kunde det visualiseras hur laddningar, både injicerades och extraherades, från nanopartiklarna men inte från polyeten. Det tolkades som att extra energinivåer skapades på och runt nanopartiklarna som fungerar för att fånga in laddningar, ekvivalent med den gängse tolkningen att nanopartiklar introducera extra elektronfällor i den polymera matrisen i nanokompositer. Nanotomografi användes för att avbilda elektriska träd i tre dimensioner. Avbildningen av det elektriska trädet visade att tillväxten av trädet hade skett genom bildning av håligheter framför den framväxande trädstrukturen. Håligheterna leder till försvagning av materialet framför det propagerande trädet och förenklar på det sättet fortsatt tillväxt. Bildningen av håligheter framför trädstrukturen uppvisar en analogi till propagering av sprickor vid mekanisk belastning, i enlighet med Griffiths koncept.
QC 20161006
Глєбов, Олег Юрійович. "Вдосконалення заземлювальних пристроїв електричних підстанцій для забезпечення безаварійної роботи вторинних кіл." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40844.
Full textThesis for granting the Degree of Candidate of Technical sciences in speciality 05.14.02 – electric stations, networks and systems. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the improvement of grounding systems of substations with voltage 330 (220) / 150 (110) kV on the criterion of prevention of damage to the insulation of current protection cables with a lightning strike and with short-circuit on the bus of the switchgear of the specified voltage classes. On the basis of the analysis of experimental data obtained at 80 operating substations of Ukraine, independent factors are determined, as well as insignificant from a number of independent ones. On the basis of four- and five-factor experiments, a model was developed to determine the grounding systems resistance. A comparative analysis of the obtained model with known computational methods was carried out. The value of the resistance, determined by the formula of the normative document, for most substations is less than determined by the received model, therefore, is an estimate from below. On the basis of a sixfactor experiment, a model for determining the voltage on the cable insulation of the secondary circuits of the current transformer is obtained, which is the most distant from the relay panels hall, with a short circuit on the bus of the switchgear. In the paper, the procedure for the experimental determination of voltage on cable isolation during simulation of short circuit was developed. In this work a method is developed and examples are given for determination of constructive parameters and material costs of grounding systems with the use of the mathematical models obtained in the work on the criterion of prevention of damage to insulation of secondary circuits with short circuit, and according to the of prevention the false triggering of current protection in the event of damage to the cable insulation.
Глєбов, Олег Юрійович. "Вдосконалення заземлювальних пристроїв електричних підстанцій для забезпечення безаварійної роботи вторинних кіл." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40840.
Full textThesis for granting the Degree of Candidate of Technical sciences in speciality 05.14.02 – electric stations, networks and systems. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the improvement of grounding systems of substations with voltage 330 (220) / 150 (110) kV on the criterion of prevention of damage to the insulation of current protection cables with a lightning strike and with short-circuit on the bus of the switchgear of the specified voltage classes. On the basis of the analysis of experimental data obtained at 80 operating substations of Ukraine, independent factors are determined, as well as insignificant from a number of independent ones. On the basis of four- and five-factor experiments, a model was developed to determine the grounding systems resistance. A comparative analysis of the obtained model with known computational methods was carried out. The value of the resistance, determined by the formula of the normative document, for most substations is less than determined by the received model, therefore, is an estimate from below. On the basis of a sixfactor experiment, a model for determining the voltage on the cable insulation of the secondary circuits of the current transformer is obtained, which is the most distant from the relay panels hall, with a short circuit on the bus of the switchgear. In the paper, the procedure for the experimental determination of voltage on cable isolation during simulation of short circuit was developed. In this work a method is developed and examples are given for determination of constructive parameters and material costs of grounding systems with the use of the mathematical models obtained in the work on the criterion of prevention of damage to insulation of secondary circuits with short circuit, and according to the of prevention the false triggering of current protection in the event of damage to the cable insulation.
Mugala, Gavita. "Influence of the semi-conducting screens on the wave propagation characteristics of medium voltage extruded cables." Licentiate thesis, KTH, Electrical Systems, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1537.
Full textLuo, Jing. "Novel insulation techniques for high voltage pulse transformers." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13327.
Full textWallström, Stina. "Biofilms on silicone rubber for outdoor high voltage insulation." Doctoral thesis, KTH, Fiber- och polymerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171.
Full textBooks on the topic "High Voltage Cable Insulation"
Arora, Ravindra. High voltage and electrical insulation engineering. Piscataway, NJ: IEEE Press, 2011.
Find full textZhu, Daming. The detection of partial discharge in high voltage insulating materials, cable and cable terminations using acoustic emission techniques. Manchester: University of Manchester, 1996.
Find full textKind, Dieter, and Hermann Kärner. High-Voltage Insulation Technology. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0.
Full textUshakov, Vasily Y. Insulation of High-Voltage Equipment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8.
Full textArora, Ravindra, and Wolfgang Mosch. High Voltage and Electrical Insulation Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470947906.
Full textCanadian Society of Civil Engineers., ed. High voltage insulator manufacture. [Montréal?: s.n., 1991.
Find full textAbderrazzaq, Mohammad Hassan. High voltage composite insulation of water absorption. Manchester: University of Manchester, 1997.
Find full textKind, Dieter. High-voltage insulation technology: Textbook for electrical engineers. Braunschweig: Vieweg, 1985.
Find full textS, Zaengl W., and Kuffel J, eds. High voltage engineering: Fundamentals. 2nd ed. Oxford: Butterworth-Heinemann, 2000.
Find full textKreuger, F. H. Partial discharge detection in high-voltage equipment. London: Butterworths, 1989.
Find full textBook chapters on the topic "High Voltage Cable Insulation"
Zhang, Wei, Xiao Tan, Man Ding, and Weifeng He. "Assessment for Aging State of High-Voltage Cable Insulation Based on Fuzzy Clustering Method." In The proceedings of the 10th Frontier Academic Forum of Electrical Engineering (FAFEE2022), 107–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3404-1_10.
Full textAbdelghani, Rouini, Kouzou Abdellah, and Larbi Messaouda. "Study of Electrical Field Distribution in the Insulation of High-Voltage Cables." In Lecture Notes in Electrical Engineering, 723–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6403-1_49.
Full textWang, Jiahe, Man Ding, Weifeng He, and Zhenfei Chen. "The Space Charge Characteristic of Cross-Linking Polyethylene Insulation of High Voltage DC Cables on Different Voltage Levels Under Temperature Gradient." In Lecture Notes in Electrical Engineering, 1365–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0451-8_138.
Full textBeik, Omid, and Ahmad S. Al-Adsani. "High Voltage Insulation Systems." In DC Wind Generation Systems, 155–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39346-5_6.
Full textUshakov, Vasily Y. "Calculation of Insulation." In Insulation of High-Voltage Equipment, 351–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8_11.
Full textKind, Dieter, and Hermann Kärner. "Electric Strength." In High-Voltage Insulation Technology, 1–61. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_1.
Full textKind, Dieter, and Hermann Kärner. "Insulating Materials in High-Voltage Technology." In High-Voltage Insulation Technology, 62–96. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_2.
Full textKind, Dieter, and Hermann Kärner. "Design and Manufacture of High-Voltage Equipment." In High-Voltage Insulation Technology, 97–158. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_3.
Full textMinkner, Ruthard, and Joachim Schmid. "Insulation for High Voltage Equipment." In The Technology of Instrument Transformers, 1–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-34863-2_1.
Full textUshakov, Vasily Y. "Insulation and Media Test Techniques." In Insulation of High-Voltage Equipment, 13–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8_2.
Full textConference papers on the topic "High Voltage Cable Insulation"
Mills, D. H., P. L. Lewin, and G. Chen. "Ageing of high voltage cable insulation." In 2011 Electrical Insulation Conference (EIC) (Formerly EIC/EME). IEEE, 2011. http://dx.doi.org/10.1109/eic.2011.5996194.
Full textKohalmy, S. "Polyolefins as candidates for HVDC cable insulation materials." In 11th International Symposium on High-Voltage Engineering (ISH 99). IEE, 1999. http://dx.doi.org/10.1049/cp:19990832.
Full textLi, F., L. Zhong, J. Gao, R. Sui, W. Li, and H. Zhang. "The voltage endurance characteristics of HVDC cable insulation slices." In 22nd International Symposium on High Voltage Engineering (ISH 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2022.0261.
Full textWang, W., X. Yan, H. Wang, Y. Feng, and L. Zhang. "Cable deformation and electric field distortion of submarine cable insulation caused by anchoring impact." In 22nd International Symposium on High Voltage Engineering (ISH 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2022.0053.
Full textHolto, Jorunn, and Erling Ildstad. "Electrical treeing in extruded polypropylene high voltage cable insulation." In 2010 International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2010. http://dx.doi.org/10.1109/ichve.2010.5640748.
Full textZhang, L., L. Wang, Q. Lv, Z. Tian, S. Yang, X. Yue, and H. Li. "An integrated voltage generator for medium voltage power cable insulation diagnosis." In 22nd International Symposium on High Voltage Engineering (ISH 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2022.0169.
Full textWu, Ruay-Nan, and Chien-Kuo Chang. "Deterioration trend on electrical treeing of underground cable insulation." In 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2012. http://dx.doi.org/10.1109/ipmhvc.2012.6518818.
Full textDuan, Jiazhen, Hongmao Huang, Ruxin Shi, Xiaoqiang Chen, Kun Xie, Chengyan Ren, and Tao Shao. "Plasma Repair of Insulation Crack Defects for Cable Accessories." In 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). IEEE, 2022. http://dx.doi.org/10.1109/ichve53725.2022.9961411.
Full textMinghui Bao, Shiying Tang, Junjia He, Xiaogen Yin, Qian Wang, Gaolin Wu, and Yan Yang. "The initiation phenomena of electrical treeing in XLPE cable insulation." In 2012 International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2012. http://dx.doi.org/10.1109/ichve.2012.6357142.
Full textHe, Jinliang, and Yao Zhou. "Progress in eco-friendly high voltage cable insulation materials." In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2018. http://dx.doi.org/10.1109/icpadm.2018.8401276.
Full textReports on the topic "High Voltage Cable Insulation"
Eager, G. S. Jr, G. W. Seman, and B. Fryszczyn. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/212744.
Full textEamer, J. B. R., C. Greaves, and E. L. King. The science questions underpinning the potential for offshore wind turbines on Atlantic Canada's continental shelves. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331697.
Full text