To see the other types of publications on this topic, follow the link: Higher-Dimensional Mathematics.

Journal articles on the topic 'Higher-Dimensional Mathematics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Higher-Dimensional Mathematics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Baez, John C., and Martin Neuchl. "Higher Dimensional Algebra." Advances in Mathematics 121, no. 2 (1996): 196–244. http://dx.doi.org/10.1006/aima.1996.0052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shonkwiler, Clayton, and David Shea Vela-Vick. "Higher-dimensional linking integrals." Proceedings of the American Mathematical Society 139, no. 04 (2011): 1511. http://dx.doi.org/10.1090/s0002-9939-2010-10603-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rogers, James T. "Higher dimensional aposyndetic decompositions." Proceedings of the American Mathematical Society 131, no. 10 (2003): 3285–88. http://dx.doi.org/10.1090/s0002-9939-03-06888-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Gwang-Il. "Higher dimensional PH curves." Proceedings of the Japan Academy, Series A, Mathematical Sciences 78, no. 10 (2002): 185–87. http://dx.doi.org/10.3792/pjaa.78.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borwein, Jonathan M., O.-Yeat Chan, and R. E. Crandall. "Higher-Dimensional Box Integrals." Experimental Mathematics 19, no. 4 (2010): 431–46. http://dx.doi.org/10.1080/10586458.2010.10390634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schwartzman, Sol. "Higher Dimensional Asymptotic Cycles." Canadian Journal of Mathematics 55, no. 3 (2003): 636–48. http://dx.doi.org/10.4153/cjm-2003-026-0.

Full text
Abstract:
AbstractGiven a p-dimensional oriented foliation of an n-dimensional compact manifold Mn and a transversal invariant measure τ, Sullivan has defined an element of Hp(Mn; R). This generalized the notion of a μ-asymptotic cycle, which was originally defined for actions of the real line on compact spaces preserving an invariant measure μ. In this one-dimensional case there was a natural 1—1 correspondence between transversal invariant measures τ and invariant measures μ when one had a smooth flow without stationary points.For what we call an oriented action of a connected Lie group on a compact m
APA, Harvard, Vancouver, ISO, and other styles
7

Gomi, Kiyonori, and Yuji Terashima. "Higher-dimensional parallel transports." Mathematical Research Letters 8, no. 1 (2001): 25–33. http://dx.doi.org/10.4310/mrl.2001.v8.n1.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banerjee, Deveena R., Sara Chari, and Adriana Salerno. "Higher-dimensional origami constructions." Involve, a Journal of Mathematics 16, no. 2 (2023): 297–312. http://dx.doi.org/10.2140/involve.2023.16.297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barja, Miguel Ángel, Rita Pardini, and Lidia Stoppino. "Higher-dimensional Clifford–Severi equalities." Communications in Contemporary Mathematics 22, no. 08 (2019): 1950079. http://dx.doi.org/10.1142/s0219199719500792.

Full text
Abstract:
Let [Formula: see text] be a smooth complex projective variety, [Formula: see text] a morphism to an abelian variety such that [Formula: see text] injects into [Formula: see text] and let [Formula: see text] be a line bundle on [Formula: see text]; denote by [Formula: see text] the minimum of [Formula: see text] for [Formula: see text]. The so-called Clifford–Severi inequalities have been proven in [M. A. Barja, Generalized Clifford–Severi inequality and the volume of irregular varieties, Duke Math. J. 164(3) (2015) 541–568; M. A. Barja, R. Pardini and L. Stoppino, Linear systems on irregular
APA, Harvard, Vancouver, ISO, and other styles
10

Knibbeler, Vincent, Sara Lombardo, and Jan A. Sanders. "Higher-Dimensional Automorphic Lie Algebras." Foundations of Computational Mathematics 17, no. 4 (2016): 987–1035. http://dx.doi.org/10.1007/s10208-016-9312-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Narayanan, Hariharan, and H. Narayanan. "Higher Dimensional Electrical Circuits." Circuits, Systems, and Signal Processing 39, no. 4 (2019): 1770–96. http://dx.doi.org/10.1007/s00034-019-01236-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

CHOE, Boo Rim. "On higher dimensional Luecking's theorem." Journal of the Mathematical Society of Japan 61, no. 1 (2009): 213–24. http://dx.doi.org/10.2969/jmsj/06110213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jelonek, Włodzimierz. "Higher-dimensional Gray Hermitian manifolds." Journal of the London Mathematical Society 80, no. 3 (2009): 729–49. http://dx.doi.org/10.1112/jlms/jdp050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Seade, José, and Alberto Verjovsky. "Higher dimensional complex Kleinian groups." Mathematische Annalen 322, no. 2 (2002): 279–300. http://dx.doi.org/10.1007/s002080100247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Arbieto, A., and C. A. Morales. "A dichotomy for higher-dimensional flows." Proceedings of the American Mathematical Society 141, no. 8 (2013): 2817–27. http://dx.doi.org/10.1090/s0002-9939-2013-11536-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

He, Zhengxu, and Jinsong Liu. "Factoring the higher dimensional quasiconformal mappings." Transactions of the American Mathematical Society 372, no. 8 (2019): 5341–53. http://dx.doi.org/10.1090/tran/7679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhao, Fayou, and Li in Ma. "Higher-dimensional weighted Knopp type inequalities." Mathematical Inequalities & Applications, no. 2 (2019): 619–29. http://dx.doi.org/10.7153/mia-2019-22-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Isaak, G. "Constructions for higher dimensional perfect multifactors." aequationes mathematicae 64, no. 1-2 (2002): 70–88. http://dx.doi.org/10.1007/s00010-002-8032-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rahaman, F., S. Chakraborty, Saibal Ray, A. A. Usmani, and S. Islam. "The Higher Dimensional Gravastars." International Journal of Theoretical Physics 54, no. 1 (2014): 50–61. http://dx.doi.org/10.1007/s10773-014-2198-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Goff, Michael. "Higher Dimensional Moore Bounds." Graphs and Combinatorics 27, no. 4 (2010): 505–30. http://dx.doi.org/10.1007/s00373-010-0979-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Blanc, Jérémy, Stéphane Lamy, and Susanna Zimmermann. "Quotients of higher-dimensional Cremona groups." Acta Mathematica 226, no. 2 (2021): 211–318. http://dx.doi.org/10.4310/acta.2021.v226.n2.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rippon, P. J. "Towards a higher-dimensional MacLane class." Mathematical Proceedings of the Cambridge Philosophical Society 119, no. 4 (1996): 665–71. http://dx.doi.org/10.1017/s0305004100074508.

Full text
Abstract:
Let D be a bounded region in ℝm, m ≥ 2. We say that a function u defined in D has asymptotic value α if there is a boundary path Γ:x(t), 0≤t<1, in D (that is, dist (x(t), ∂D)→0 as t→1), such that u(x(t))→α as t→1. If in addition, x(t)→ξ as t→1, then u has asymptotic value α at ξ.
APA, Harvard, Vancouver, ISO, and other styles
23

Baez, John C., and Laurel Langford. "Higher-dimensional algebra IV: 2-tangles." Advances in Mathematics 180, no. 2 (2003): 705–64. http://dx.doi.org/10.1016/s0001-8708(03)00018-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Catanese, Fabrizio, and Yujiro Kawamata. "Fujita decomposition over higher dimensional base." European Journal of Mathematics 5, no. 3 (2018): 720–28. http://dx.doi.org/10.1007/s40879-018-0287-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bhosle, Usha. "Parabolic sheaves on higher dimensional varieties." Mathematische Annalen 293, no. 1 (1992): 177–92. http://dx.doi.org/10.1007/bf01444711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fekete, Sándor P., Ekkehard Köhler, and Jürgen Teich. "Higher‐Dimensional Packing with Order Constraints." SIAM Journal on Discrete Mathematics 20, no. 4 (2006): 1056–78. http://dx.doi.org/10.1137/060665713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kališnik, Sara, Vitaliy Kurlin, and Davorin Lešnik. "A higher-dimensional homologically persistent skeleton." Advances in Applied Mathematics 102 (January 2019): 113–42. http://dx.doi.org/10.1016/j.aam.2018.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bartels, Arthur. "Higher dimensional links are singular slice." Mathematische Annalen 320, no. 3 (2001): 547–76. http://dx.doi.org/10.1007/pl00004486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kahn, Bruno. "Lower ?-cohomology of higher-dimensional quadrics." Archiv der Mathematik 65, no. 3 (1995): 244–50. http://dx.doi.org/10.1007/bf01195094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lehua, Mu, Zhang Zhihua, and Zhang Peixuan. "On the higher-dimensional wavelet frames." Applied and Computational Harmonic Analysis 16, no. 1 (2004): 44–59. http://dx.doi.org/10.1016/j.acha.2003.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ghorpade, Sudhir R. "Young Multitableaux and Higher Dimensional Determinants." Advances in Mathematics 121, no. 2 (1996): 167–95. http://dx.doi.org/10.1006/aima.1996.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kuznetsov, Alexander Gennad'evich, and Yuri Gennadievich Prokhorov. "On higher-dimensional del Pezzo varieties." Izvestiya: Mathematics 87, no. 3 (2023): 488–561. http://dx.doi.org/10.4213/im9385e.

Full text
Abstract:
We study del Pezzo varieties, higher-dimensional analogues of del Pezzo surfaces. In particular, we introduce ADE classification of del Pezzo varieties, show that in type $\mathrm A$ the dimension of non-conical del Pezzo varieties is bounded by $12 - d - r$, where $d$ is the degree and $r$ is the rank of the class group, and classify maximal del Pezzo varieties.
APA, Harvard, Vancouver, ISO, and other styles
33

He, Hongyu. "Reconstruction and higher-dimensional geometry." Journal of Combinatorial Theory, Series B 97, no. 3 (2007): 421–29. http://dx.doi.org/10.1016/j.jctb.2006.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mihailescu, Eugen. "Higher dimensional expanding maps and toral extensions." Proceedings of the American Mathematical Society 141, no. 10 (2013): 3467–75. http://dx.doi.org/10.1090/s0002-9939-2013-11597-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kim, Jin Hong. "Higher dimensional Enriques varieties with even index." Proceedings of the American Mathematical Society 141, no. 11 (2013): 3701–7. http://dx.doi.org/10.1090/s0002-9939-2013-11650-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Balakumar, G. P., Diganta Borah, Prachi Mahajan, and Kaushal Verma. "Remarks on the higher dimensional Suita conjecture." Proceedings of the American Mathematical Society 147, no. 8 (2019): 3401–11. http://dx.doi.org/10.1090/proc/14421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Flockerzi, Dietrich. "Resonance and bifurcation of higher-dimensional tori." Proceedings of the American Mathematical Society 94, no. 1 (1985): 147. http://dx.doi.org/10.1090/s0002-9939-1985-0781073-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rogers, James T. "Orbits of higher-dimensional hereditarily indecomposable continua." Proceedings of the American Mathematical Society 95, no. 3 (1985): 483. http://dx.doi.org/10.1090/s0002-9939-1985-0806092-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fahrenberg, Uli, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. "Languages of higher-dimensional automata." Mathematical Structures in Computer Science 31, no. 5 (2021): 575–613. http://dx.doi.org/10.1017/s0960129521000293.

Full text
Abstract:
Abstract We introduce languages of higher-dimensional automata (HDAs) and develop some of their properties. To this end, we define a new category of precubical sets, uniquely naturally isomorphic to the standard one, and introduce a notion of event consistency. HDAs are then finite, labeled, event-consistent precubical sets with distinguished subsets of initial and accepting cells. Their languages are sets of interval orders closed under subsumption; as a major technical step, we expose a bijection between interval orders and a subclass of HDAs. We show that any finite subsumption-closed set o
APA, Harvard, Vancouver, ISO, and other styles
40

Avila, G., S. J. Castillo, and J. A. Nieto. "Geometric structure of higher-dimensional spheres." Journal of Interdisciplinary Mathematics 19, no. 5-6 (2016): 955–75. http://dx.doi.org/10.1080/09720502.2014.995996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bera, Tanmoy, Mithun Kumar Das, and Anirban Mukhopadhyay. "On higher dimensional Poissonian pair correlation." Journal of Mathematical Analysis and Applications 530, no. 1 (2024): 127686. http://dx.doi.org/10.1016/j.jmaa.2023.127686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Brown, R. "Symmetry, groupoids and higher-dimensional analogues." Computers & Mathematics with Applications 17, no. 1-3 (1989): 49–57. http://dx.doi.org/10.1016/0898-1221(89)90147-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pintea, Cornel. "Smooth Mappings with Higher Dimensional Critical Sets." Canadian Mathematical Bulletin 53, no. 3 (2010): 542–49. http://dx.doi.org/10.4153/cmb-2010-057-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Doolittle, Joseph, Jean‐Philippe Labbé, Carsten E. M. C. Lange, Rainer Sinn, Jonathan Spreer, and Günter M. Ziegler. "COMBINATORIAL INSCRIBABILITY OBSTRUCTIONS FOR HIGHER DIMENSIONAL POLYTOPES." Mathematika 66, no. 4 (2020): 927–53. http://dx.doi.org/10.1112/mtk.12051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jardim, Marcos, Grégoire Menet, Daniela M. Prata, and Henrique N. Sá Earp. "Holomorphic bundles for higher dimensional gauge theory." Bulletin of the London Mathematical Society 49, no. 1 (2017): 117–32. http://dx.doi.org/10.1112/blms.12017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kapitaniak, Tomasz, Yuri Maistrenko, and Celso Grebogi. "Bubbling and riddling of higher-dimensional attractors." Chaos, Solitons & Fractals 17, no. 1 (2003): 61–66. http://dx.doi.org/10.1016/s0960-0779(02)00447-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kruglikov, Boris S. "Non-existence of higher-dimensional pseudoholomorphic submanifolds." manuscripta mathematica 111, no. 1 (2003): 51–69. http://dx.doi.org/10.1007/s00229-002-0352-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lawson, Mark V., and Alina Vdovina. "Higher dimensional generalizations of the Thompson groups." Advances in Mathematics 369 (August 2020): 107191. http://dx.doi.org/10.1016/j.aim.2020.107191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wörner, A. "A search for higher-dimensional arc planes." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 77, no. 1 (2007): 169–78. http://dx.doi.org/10.1007/bf03173496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pourabbas, A. "Higher Dimensional Cohomology of Weighted Sequence Algebras." Journal of the Australian Mathematical Society 75, no. 1 (2003): 57–68. http://dx.doi.org/10.1017/s1446788700003475.

Full text
Abstract:
AbstractIt is well known that c0(Z) is amenable and so its global dimension is zero. In this paper we will investigate the cyclic and Hochschild cohomology of Banach algebra c0 (Z, ω-1) and its unitisation with coefficients in its dual space, where ω is a weight on Z which satisfies inf {ω(i)} = 0.Moreover we show that the weak homological bi-dimension of c0 (Z, ω-1) is infinity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!