Journal articles on the topic 'Higher heating value'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Higher heating value.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Malucelli, L. C., G. F. Silvestre, J. Carneiro, E. C. Vasconcelos, M. Guiotoku, C. M. B. F. Maia, and M. A. S. Carvalho Filho. "Biochar higher heating value estimative using thermogravimetric analysis." Journal of Thermal Analysis and Calorimetry 139, no. 3 (August 5, 2019): 2215–20. http://dx.doi.org/10.1007/s10973-019-08597-8.
Full textJayaraman, Pavalavana Pandian, Sendhil Kumar Natarajan, and M. Pugazhvadivu. "Estimation of Higher Heating Value of Waste Frying Oil from its Chemical Properties." Applied Mechanics and Materials 592-594 (July 2014): 2432–36. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.2432.
Full textMateus, Maria Margarida, João Carlos Bordado, and Rui Galhano dos Santos. "Potential biofuel from liquefied cork – Higher heating value comparison." Fuel 174 (June 2016): 114–17. http://dx.doi.org/10.1016/j.fuel.2016.01.081.
Full textWnetrzak, R., D. J. M. Hayes, L. S. Jensen, J. J. Leahy, and W. Kwapinski. "Determination of the Higher Heating Value of Pig Manure." Waste and Biomass Valorization 6, no. 3 (January 30, 2015): 327–33. http://dx.doi.org/10.1007/s12649-015-9350-y.
Full textGórnicki, Krzysztof, Agnieszka Kaleta, and Radosław Winiczenko. "Estimating the higher heating value of forest and agricultural biomass." E3S Web of Conferences 154 (2020): 01002. http://dx.doi.org/10.1051/e3sconf/202015401002.
Full textDirgantara, Made, Karelius Karelius, and Marselin Devi Ariyanti, Sry Ayu K. Tamba. "Evaluasi Prediksi Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Proksimat." Risalah Fisika 4, no. 1 (July 14, 2020): 1–7. http://dx.doi.org/10.35895/rf.v4i1.166.
Full textNakawajana, Natrapee, Jetsada Posom, and Jaruwat Paeoui. "The Prediction of Higher Heating Value, Lower Heating Value and Ash Content of rice Husk Using FT-NIR Spectroscopy." Engineering Journal 22, no. 5 (September 30, 2018): 45–56. http://dx.doi.org/10.4186/ej.2018.22.5.45.
Full textZhu, Mao Kui, De Fan Qing, and Ai Rui Chen. "Numerical Simulation and Experimental Research on Higher Heating Value Biomass Gas Gasifier." Applied Mechanics and Materials 737 (March 2015): 38–45. http://dx.doi.org/10.4028/www.scientific.net/amm.737.38.
Full textZeng, Qi. "Research on the Heating Value Measurement of Ethanol-Biodiesel-Diesel Blend." Applied Mechanics and Materials 333-335 (July 2013): 1884–88. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.1884.
Full textDirgantara, Made, Novi Kristian, Karelius, and Karelius. "Evaluasi Prediksi Nilai Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Ultimate." Jurnal Jejaring Matematika dan Sains 1, no. 2 (December 31, 2019): 107–13. http://dx.doi.org/10.36873/jjms.v1i2.218.
Full textBoumanchar, Imane, Younes Chhiti, Fatima Ezzahrae M’Hamdi Alaoui, Abdelaziz Sahibed-Dine, Fouad Bentiss, Charafeddine Jama, and Mohammed Bensitel. "Multiple regression and genetic programming for coal higher heating value estimation." International Journal of Green Energy 15, no. 14-15 (October 22, 2018): 958–64. http://dx.doi.org/10.1080/15435075.2018.1529591.
Full textKeybondorian, Ebrahim, Hosein Zanbouri, Amin Bemani, and Touba Hamule. "Estimation of the higher heating value of biomass using proximate analysis." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39, no. 20 (October 18, 2017): 2025–30. http://dx.doi.org/10.1080/15567036.2017.1400609.
Full textGórnicki, Krzysztof, Agnieszka Kaleta, and Radosław Winiczenko. "Prediction of higher heating value of oat grain and straw biomass." E3S Web of Conferences 154 (2020): 01003. http://dx.doi.org/10.1051/e3sconf/202015401003.
Full textHan, Jun, Xi Yao, Yiqiu Zhan, Song-Yul Oh, Lae-Hyun Kim, and Hee-Joon Kim. "A method for estimating higher heating value of biomass-plastic fuel." Journal of the Energy Institute 90, no. 2 (April 2017): 331–35. http://dx.doi.org/10.1016/j.joei.2016.01.001.
Full textMontero, Gisela, Marcos A. Coronado, Ricardo Torres, Beatriz E. Jaramillo, Conrado García, Margarita Stoytcheva, Ana M. Vázquez, José A. León, Alejandro A. Lambert, and Edgar Valenzuela. "Higher heating value determination of wheat straw from Baja California, Mexico." Energy 109 (August 2016): 612–19. http://dx.doi.org/10.1016/j.energy.2016.05.011.
Full textFernandes, Frederico, Sandro Matos, Daniela Gaspar, Luciana Silva, Ivo Paulo, Salomé Vieira, Paula C. R. Pinto, João Bordado, and Rui Galhano dos Santos. "Boosting the Higher Heating Value of Eucalyptus globulus via Thermochemical Liquefaction." Sustainability 13, no. 7 (March 26, 2021): 3717. http://dx.doi.org/10.3390/su13073717.
Full textSoponpongpipat, Nitipong, Dussadeeporn Sittikul, and Unchana Sae-Ueng. "Higher heating value prediction of torrefaction char produced from non-woody biomass." Frontiers in Energy 9, no. 4 (October 12, 2015): 461–71. http://dx.doi.org/10.1007/s11708-015-0377-3.
Full textWanignon Ferdinand, Fassinou, Laurent Van de Steene, Koua Kamenan Blaise, and Toure Siaka. "Prediction of pyrolysis oils higher heating value with gas chromatography–mass spectrometry." Fuel 96 (June 2012): 141–45. http://dx.doi.org/10.1016/j.fuel.2012.01.007.
Full textZHU, X., and R. VENDERBOSCH. "A correlation between stoichiometrical ratio of fuel and its higher heating value." Fuel 84, no. 7-8 (May 2005): 1007–10. http://dx.doi.org/10.1016/j.fuel.2004.12.002.
Full textSheng, Changdong, and J. L. T. Azevedo. "Estimating the higher heating value of biomass fuels from basic analysis data." Biomass and Bioenergy 28, no. 5 (May 2005): 499–507. http://dx.doi.org/10.1016/j.biombioe.2004.11.008.
Full textRedden, Hilary, John J. Milledge, H. Christopher Greenwell, Philip W. Dyer, and Patricia J. Harvey. "Changes in higher heating value and ash content of seaweed during ensiling." Journal of Applied Phycology 29, no. 2 (October 15, 2016): 1037–46. http://dx.doi.org/10.1007/s10811-016-0975-4.
Full textChen, Xiaoling, Yongxing Zhang, Baoshen Xu, and Yifan Li. "A simple model for estimation of higher heating value of oily sludge." Energy 239 (January 2022): 121921. http://dx.doi.org/10.1016/j.energy.2021.121921.
Full textChen, Xiao Liang, Zuan Tian, and Jian Ping Ding. "Experimental Measurement and Prediction of Heating Values of Municipal Solid Waste." Materials Science Forum 867 (August 2016): 139–43. http://dx.doi.org/10.4028/www.scientific.net/msf.867.139.
Full textZha, Yu Wei, Juan Liu, Xiu Qin Yang, and Xia Li. "Effect of Sintering Temperature on MAl2O4 Catalysts Used for the Catalytic Pyrolysis of Microalgae." Advanced Materials Research 773 (September 2013): 508–13. http://dx.doi.org/10.4028/www.scientific.net/amr.773.508.
Full textRadenahmad, Nikdalila, Md Sumon Reza, Muhammad S. Abu Bakar, and Abul K. Azad. "Thermochemical Characterization of Rice Husk (Oryza Sativa Linn) for Power Generation." ASEAN Journal of Chemical Engineering 20, no. 2 (December 31, 2020): 184. http://dx.doi.org/10.22146/ajche.59267.
Full textRizhikovs, Janis, Aigars Paze, Ance Plavniece, Kristaps Stankus, and Inguss Virsis. "A NOVEL METHOD FOR BIRCH OUTER BARK QUALITY CONTROL USING HIGHER HEATING VALUE." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 3 (June 15, 2017): 282. http://dx.doi.org/10.17770/etr2017vol3.2550.
Full textKieseler, Stefan, York Neubauer, and Nico Zobel. "Ultimate and Proximate Correlations for Estimating the Higher Heating Value of Hydrothermal Solids." Energy & Fuels 27, no. 2 (February 12, 2013): 908–18. http://dx.doi.org/10.1021/ef301752d.
Full textBaghban, Alireza, and Taghi Ebadi. "GA-ANFIS modeling of higher heating value of wastes: Application to fuel upgrading." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41, no. 1 (October 5, 2018): 7–13. http://dx.doi.org/10.1080/15567036.2017.1344746.
Full textNhuchhen, Daya Ram, and P. Abdul Salam. "Estimation of higher heating value of biomass from proximate analysis: A new approach." Fuel 99 (September 2012): 55–63. http://dx.doi.org/10.1016/j.fuel.2012.04.015.
Full textChoi, Hong L., Sartika I. A. Sudiarto, and Anriansyah Renggaman. "Prediction of livestock manure and mixture higher heating value based on fundamental analysis." Fuel 116 (January 2014): 772–80. http://dx.doi.org/10.1016/j.fuel.2013.08.064.
Full textGhugare, S. B., S. Tiwary, V. Elangovan, and S. S. Tambe. "Prediction of Higher Heating Value of Solid Biomass Fuels Using Artificial Intelligence Formalisms." BioEnergy Research 7, no. 2 (December 13, 2013): 681–92. http://dx.doi.org/10.1007/s12155-013-9393-5.
Full textAbdul Wahid, Fakhrur Razil Alawi, Suriyati Saleh, and Noor Asma Fazli Abdul Samad. "Estimation of Higher Heating Value of Torrefied Palm Oil Wastes from Proximate Analysis." Energy Procedia 138 (October 2017): 307–12. http://dx.doi.org/10.1016/j.egypro.2017.10.102.
Full textMaksimuk, Yury, Zoya Antonava, Vladimir Krouk, Alina Korsakova, and Vera Kursevich. "Prediction of higher heating value (HHV) based on the structural composition for biomass." Fuel 299 (September 2021): 120860. http://dx.doi.org/10.1016/j.fuel.2021.120860.
Full textJayaraman, Pavalavana Pandian, Sendhil Kumar Natarajan, and M. Pugazhvadivu. "Determination of Higher Heating Value of Waste Frying Oil from its Physico-Chemical Properties." Journal of Biofuels and Bioenergy 1, no. 1 (2015): 79. http://dx.doi.org/10.5958/2454-8618.2015.00010.3.
Full textMolinari, Krissina Camilla, Washington Luiz Esteves Magalhães, Agnieszka Pawlicka, and Gilmara de Oliveira Machado. "Fitted higher heating value from proximate analysis of torrefied pellets of Pinus taeda L." Molecular Crystals and Liquid Crystals 693, no. 1 (November 2, 2019): 18–29. http://dx.doi.org/10.1080/15421406.2020.1723915.
Full textQian, Xuejun, Seong Lee, Ana-maria Soto, and Guangming Chen. "Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis." Resources 7, no. 3 (June 26, 2018): 39. http://dx.doi.org/10.3390/resources7030039.
Full textBoumanchar, Imane, Kenza Charafeddine, Younes Chhiti, Fatima Ezzahrae M’hamdi Alaoui, Abdelaziz Sahibed-dine, Fouad Bentiss, Charafeddine Jama, and Mohammed Bensitel. "Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming." Biomass Conversion and Biorefinery 9, no. 3 (February 7, 2019): 499–509. http://dx.doi.org/10.1007/s13399-019-00386-5.
Full textJampolski, Leon, Tobias Jakobs, Thomas Kolb, and Norbert Willenbacher. "Coke Slurries with Improved Higher Heating Value and Good Processability via Particle Shape Design." Chemical Engineering & Technology 40, no. 10 (August 31, 2017): 1885–94. http://dx.doi.org/10.1002/ceat.201700061.
Full textFassinou, Wanignon Ferdinand, Laurent Van de Steene, Siaka Toure, and Eric Martin. "What correlation is appropriate to evaluate biodiesels and vegetable oils higher heating value (HHV)?" Fuel 90, no. 11 (November 2011): 3398–403. http://dx.doi.org/10.1016/j.fuel.2011.04.025.
Full textAraújo, Luísa Carvalho Pereira, Fábio Minoru Yamaji, Vitor Hugo Lima, and Vagner Roberto Botaro. "Kraft lignin fractionation by organic solvents: Correlation between molar mass and higher heating value." Bioresource Technology 314 (October 2020): 123757. http://dx.doi.org/10.1016/j.biortech.2020.123757.
Full textTelmo, C., and J. Lousada. "The explained variation by lignin and extractive contents on higher heating value of wood." Biomass and Bioenergy 35, no. 5 (May 2011): 1663–67. http://dx.doi.org/10.1016/j.biombioe.2010.12.038.
Full textMaksimuk, Yury, Zoya Antonava, Vladimir Krouk, Alina Korsakova, and Vera Kursevich. "Prediction of higher heating value based on elemental composition for lignin and other fuels." Fuel 263 (March 2020): 116727. http://dx.doi.org/10.1016/j.fuel.2019.116727.
Full textAl-Degs, Yahya S., Mohammed Al-Ghouti, and Gavin Walker. "Determination of higher heating value of petro-diesels using mid-infrared spectroscopy and chemometry." Journal of Thermal Analysis and Calorimetry 107, no. 2 (May 11, 2011): 853–62. http://dx.doi.org/10.1007/s10973-011-1574-x.
Full textTyukavina, Ol'ga, and Aleksandra Gudina. "HEATING CAPABILITY OF POSTPYROGEN PINE WOOD." Forestry Engineering Journal 10, no. 2 (July 6, 2020): 188–95. http://dx.doi.org/10.34220/issn.2222-7962/2020.2/19.
Full textMundike, Jhonnah, François-Xavier Collard, and Johann F. Görgens. "Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value." Bioresource Technology 209 (June 2016): 90–99. http://dx.doi.org/10.1016/j.biortech.2016.02.082.
Full textPfersich, Jens, Pablo J. Arauzo, Michela Lucian, Pierpaolo Modugno, Maria-Magdalena Titirici, Luca Fiori, and Andrea Kruse. "Hydrothermal Conversion of Spent Sugar Beets into High-Value Platform Molecules." Molecules 25, no. 17 (August 27, 2020): 3914. http://dx.doi.org/10.3390/molecules25173914.
Full textTjojudo, Danianto Hendragiri, and Sutrasno Kartohardjono. "Methane Number Improvement of Gas from LNG Regasification Unit." E3S Web of Conferences 67 (2018): 04033. http://dx.doi.org/10.1051/e3sconf/20186704033.
Full textCao, Yan, Yang Wang, John T. Riley, and Wei-Ping Pan. "A novel biomass air gasification process for producing tar-free higher heating value fuel gas." Fuel Processing Technology 87, no. 4 (April 2006): 343–53. http://dx.doi.org/10.1016/j.fuproc.2005.10.003.
Full textAkkaya, Ali Volkan. "Proximate analysis based multiple regression models for higher heating value estimation of low rank coals." Fuel Processing Technology 90, no. 2 (February 2009): 165–70. http://dx.doi.org/10.1016/j.fuproc.2008.08.016.
Full textCallejón-Ferre, A. J., B. Velázquez-Martí, J. A. López-Martínez, and F. Manzano-Agugliaro. "Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value." Renewable and Sustainable Energy Reviews 15, no. 2 (February 2011): 948–55. http://dx.doi.org/10.1016/j.rser.2010.11.012.
Full text