Academic literature on the topic 'Higher order topological insulators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Higher order topological insulators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Higher order topological insulators"
Schindler, Frank, Ashley M. Cook, Maia G. Vergniory, Zhijun Wang, Stuart S. P. Parkin, B. Andrei Bernevig, and Titus Neupert. "Higher-order topological insulators." Science Advances 4, no. 6 (June 2018): eaat0346. http://dx.doi.org/10.1126/sciadv.aat0346.
Full textKirsch, Marco S., Yiqi Zhang, Mark Kremer, Lukas J. Maczewsky, Sergey K. Ivanov, Yaroslav V. Kartashov, Lluis Torner, Dieter Bauer, Alexander Szameit, and Matthias Heinrich. "Nonlinear second-order photonic topological insulators." Nature Physics 17, no. 9 (July 1, 2021): 995–1000. http://dx.doi.org/10.1038/s41567-021-01275-3.
Full textZhang, Baile. "Acoustic higher-order topological insulators." Journal of the Acoustical Society of America 146, no. 4 (October 2019): 2914. http://dx.doi.org/10.1121/1.5137110.
Full textPeterson, Christopher W., Tianhe Li, Wladimir A. Benalcazar, Taylor L. Hughes, and Gaurav Bahl. "A fractional corner anomaly reveals higher-order topology." Science 368, no. 6495 (June 4, 2020): 1114–18. http://dx.doi.org/10.1126/science.aba7604.
Full textYan, Zhong-Bo. "Higher-order topological insulators and superconductors." Acta Physica Sinica 68, no. 22 (2019): 226101. http://dx.doi.org/10.7498/aps.68.20191101.
Full textSchindler, Frank. "Dirac equation perspective on higher-order topological insulators." Journal of Applied Physics 128, no. 22 (December 14, 2020): 221102. http://dx.doi.org/10.1063/5.0035850.
Full textZhang, Yiqi, Y. V. Kartashov, L. Torner, Yongdong Li, and A. Ferrando. "Nonlinear higher-order polariton topological insulator." Optics Letters 45, no. 17 (August 19, 2020): 4710. http://dx.doi.org/10.1364/ol.396039.
Full textChen, Kai, Matthew Weiner, Mengyao Li, Xiang Ni, Andrea Alù, and Alexander B. Khanikaev. "Nonlocal topological insulators: Deterministic aperiodic arrays supporting localized topological states protected by nonlocal symmetries." Proceedings of the National Academy of Sciences 118, no. 34 (August 19, 2021): e2100691118. http://dx.doi.org/10.1073/pnas.2100691118.
Full textXue, Haoran, Yahui Yang, Fei Gao, Yidong Chong, and Baile Zhang. "Acoustic higher-order topological insulator on a kagome lattice." Nature Materials 18, no. 2 (December 31, 2018): 108–12. http://dx.doi.org/10.1038/s41563-018-0251-x.
Full textHuang, Huaqing, Jiahao Fan, Dexin Li, and Feng Liu. "Generic Orbital Design of Higher-Order Topological Quasicrystalline Insulators with Odd Five-Fold Rotation Symmetry." Nano Letters 21, no. 16 (August 5, 2021): 7056–62. http://dx.doi.org/10.1021/acs.nanolett.1c02661.
Full textDissertations / Theses on the topic "Higher order topological insulators"
Radha, Santosh Kumar. "Knitting quantum knots-Topological phase transitions in Two-Dimensional systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595870012750826.
Full textMazumdar, Saikat. "Équations polyharmoniques sur les variétés et études asymptotiques dans une équation de Hardy-Sobolev." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0047/document.
Full textThis memoir can be divided into two parts: Part 1: In this part we obtain some existence results for conformally invariant polyharmonic boundary value problems on a compact Riemannian manifold with or without boundary. In particular we show that the best constant of the Sobolev embedding on manifolds is same as the euclidean one, and as a consequence prove the existence of minimum energy solutions when the energy functionnal goes below a quantified threshold. Next we show the existence of high energy solution using the topological method of Coron. We generalize the decomposition of Palais Smale sequences as a sum of bubble on manifolds with or without boundary, a result in the spirit of Struwe's celebrated 1984 result and also an extension of PL Lions concentration compactness result on manifolds. Part2: In this part we do a blow-up analysis of the nonlinear elliptic Hardy-Sobolev equation with critical growth and vanishing boundary singularity. We assume that our equation does not admit minimising solutions, and study the asymptotic behaviour of a sequence of solution to the perturbed equation. Here the perturbation is the singularity at the origin. First we obtain optimal pointwise controlon the sequence and then obtain more precise informations on the localization of the blow-up point using the Pohozaev identity
Zhang, Shaofei. "Endogenous gypsy insulators mediate higher order chromatin organization and repress gene expression in Drosophila." 2011. http://trace.tennessee.edu/utk_graddiss/1150.
Full textBooks on the topic "Higher order topological insulators"
Alestalo, Pekka. Uniform domains of higher order. Helsinki: Suomalainen Tiedeakatemia, 1994.
Find full textDenzler, Jochen. Higher-order time asymptotics of fast diffusion in Euclidean space: A dynamical systems methods. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textMurakami, S., and T. Yokoyama. Quantum spin Hall effect and topological insulators. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0017.
Full textBook chapters on the topic "Higher order topological insulators"
Bakker, J. W., and F. Breugel. "Topological models for higher order control flow." In Lecture Notes in Computer Science, 122–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58027-1_6.
Full textBerger, Mitchell A. "Topological Quantities: Calculating Winding, Writhing, Linking, and Higher Order Invariants." In Lecture Notes in Mathematics, 75–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00837-5_2.
Full text"13. Quantum Hall Effect and Chern Insulators in Higher Dimensions." In Topological Insulators and Topological Superconductors, 164–76. Princeton: Princeton University Press, 2013. http://dx.doi.org/10.1515/9781400846733-013.
Full text"TOPOLOGICAL METHODS." In Boundary Value Problems from Higher Order Differential Equations, 235–42. WORLD SCIENTIFIC, 1986. http://dx.doi.org/10.1142/9789814415477_0019.
Full textNguyen, Dong Quan Ngoc, Lin Xing, and Lizhen Lin. "Community Detection, Pattern Recognition, and Hypergraph-Based Learning: Approaches Using Metric Geometry and Persistent Homology." In Fuzzy Systems and Data Mining VI. IOS Press, 2020. http://dx.doi.org/10.3233/faia200724.
Full textConference papers on the topic "Higher order topological insulators"
Safaei, Alireza, Nayan E. Myerson-Jain, Md Farhadul Haque, Taylor L. Hughes, and Gaurav Bahl. "Higher-Order Topological Insulators in Nanophotonic Smart-Patterns." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.fth5c.8.
Full textBisharat, Dia'aaldin J., and Dan Sievenpiper. "Higher-order photonic topological insulator metasurfaces." In Photonic and Phononic Properties of Engineered Nanostructures X, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2020. http://dx.doi.org/10.1117/12.2547285.
Full textYan, Wenchao, Shiqi Xia, Xiuying Liu, Yuqing Xie, Liqin Tang, Daohong Song, Jingjun Xu, and Zhigang Chen. "Demonstration of corner states in photonic square-root higher-order topological insulators." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jtu3a.38.
Full textGladstone, Ran Gladstein, Minwoo Jung, and Gennady Shvets. "Spinful Photonic Higher Order Topological Insulators in the Presence of Spin Orbit Coupling." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_qels.2021.ftu1m.6.
Full textKirsch, M. S., Y. Zhang, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, and M. Heinrich. "Observation of nonlinear corner states in a higher-order photonic topological insulator." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_qels.2021.fth4h.2.
Full textShvets, Gennady B. "Higher-order topological photonics across temporal and spatial scales." In Active Photonic Platforms XIII, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2595189.
Full textVakulenko, Anton, Svetlana Kiriushechkina, Mingsong Wang, Mengyao Li, Dmitriy Zhirihin, Xiang Ni, Sriram Guddala, Dmitriy Korobkin, Andrea Alù, and Alexander B. Khanikaev. "Visualization of topological transitions and imaging of higher-order topological states in photonic metasurfaces." In Active Photonic Platforms XII, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2020. http://dx.doi.org/10.1117/12.2569324.
Full textVakulenko, A., S. Kiriushechkina, M. Li, D. Zhirihin, X. Ni, S. Guddala, D. Korobkin, A. Alu, and A. B. Khanikaev. "Experimental demonstration of higher-order topological states in photonic metasurfaces." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jm3a.3.
Full textLi, Mengyao, Dmitry Zhirihin, Maxim Gorlach, Xiang Ni, Dmitry Filonov, Alexey Slobozhanyuk, Andrea Alù, and Alexander B. Khanikaev. "Photonic higher-order topological states induced by long-range interactions." In Metamaterials, Metadevices, and Metasystems 2020, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2020. http://dx.doi.org/10.1117/12.2569326.
Full textNing, Xin, Weijun Li, Weijuan Tian, and Yueyue Lu. "Topological Higher-Order Neuron Model Based on Homology-Continuity Principle." In 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI). IEEE, 2019. http://dx.doi.org/10.1109/cchi.2019.8901920.
Full text