Academic literature on the topic 'Hilbert–Schmidt kernels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hilbert–Schmidt kernels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hilbert–Schmidt kernels"
ZHANG, HAIZHANG, and LIANG ZHAO. "ON THE INCLUSION RELATION OF REPRODUCING KERNEL HILBERT SPACES." Analysis and Applications 11, no. 02 (2013): 1350014. http://dx.doi.org/10.1142/s0219530513500140.
Full textHeo, Jaeseong. "Projectively invariant Hilbert–Schmidt kernels and convolution type operators." Studia Mathematica 213, no. 1 (2012): 61–79. http://dx.doi.org/10.4064/sm213-1-5.
Full textFerguson, Sarah H., and Richard Rochberg. "Higher order Hilbert-Schmidt Hankel forms and tensors of analytical kernels." MATHEMATICA SCANDINAVICA 96, no. 1 (2005): 117. http://dx.doi.org/10.7146/math.scand.a-14948.
Full textKumar, Hemant, and R. C. Singh Chandel. "A THEORY OF MULTIDIMENSIONAL FREDHOLM INTEGRAL EQUATIONS HAVING SEPARABLE KERNELS: SOLVABLE IN A REGION SURROUNDING BY THE HYPERPLANES." jnanabha 54, no. 01 (2024): 169–79. http://dx.doi.org/10.58250/jnanabha.2024.54121.
Full textKlimek, Malgorzata. "Spectrum of Fractional and Fractional Prabhakar Sturm–Liouville Problems with Homogeneous Dirichlet Boundary Conditions." Symmetry 13, no. 12 (2021): 2265. http://dx.doi.org/10.3390/sym13122265.
Full textCavoretto, Roberto, Gregory E. Fasshauer, and Michael McCourt. "An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels." Numerical Algorithms 68, no. 2 (2014): 393–422. http://dx.doi.org/10.1007/s11075-014-9850-z.
Full textLaumann, Felix, Julius von Kügelgen, Junhyung Park, Bernhard Schölkopf, and Mauricio Barahona. "Kernel-Based Independence Tests for Causal Structure Learning on Functional Data." Entropy 25, no. 12 (2023): 1597. http://dx.doi.org/10.3390/e25121597.
Full textFriesen, Martin, and Sven Karbach. "Stationary covariance regime for affine stochastic covariance models in Hilbert spaces." Finance and Stochastics 28, no. 4 (2024): 1077–116. http://dx.doi.org/10.1007/s00780-024-00543-3.
Full textOehring, Charles. "Singular numbers of smooth kernels." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 3 (1988): 511–14. http://dx.doi.org/10.1017/s0305004100065129.
Full textRaman, S. Ganapathi, and R. Vittal Rao. "Extended Kac-Akhiezer formulae and the Fredholm determinant of finite section Hilbert-Schmidt kernels." Proceedings Mathematical Sciences 104, no. 3 (1994): 581–91. http://dx.doi.org/10.1007/bf02867122.
Full textDissertations / Theses on the topic "Hilbert–Schmidt kernels"
Dorri, Fatemeh. "Adapting Component Analysis." Thesis, 2012. http://hdl.handle.net/10012/6738.
Full textBook chapters on the topic "Hilbert–Schmidt kernels"
Georgiev, Svetlin G. "Hilbert-Schmidt Theory of Generalized Integral Equations with Symmetric Kernels." In Integral Equations on Time Scales. Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1_6.
Full textWang, Tinghua, Wei Li, and Xianwen He. "Kernel Learning with Hilbert-Schmidt Independence Criterion." In Communications in Computer and Information Science. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3002-4_58.
Full textCollins, Peter J. "Hilbert–Schmidt Theory." In Differential and Integral Equations. Oxford University PressOxford, 2006. http://dx.doi.org/10.1093/oso/9780198533825.003.0010.
Full text"Hilbert-Schmidt Theory of Symmetric Kernel." In Applied Mathematical Methods in Theoretical Physics. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605843.ch5.
Full text"Stable Computation via the Hilbert–Schmidt SVD." In Kernel-based Approximation Methods using MATLAB. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814630146_0013.
Full text"Kernel-Based Feature Selection with the Hilbert-Schmidt Independence Criterion." In Feature Selection and Ensemble Methods for Bioinformatics. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-557-5.ch010.
Full textLou Qiang and Obradovic Zoran. "Feature Selection by Approximating the Markov Blanket in a Kernel-Induced Space." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2010. https://doi.org/10.3233/978-1-60750-606-5-797.
Full textConference papers on the topic "Hilbert–Schmidt kernels"
Hu, Chenge, Huaqing Zhang, Yuyu Zhou, and Ruixin Guan. "Measuring Hilbert-Schmidt Independence Criterion with Different Kernels." In 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE). IEEE, 2021. http://dx.doi.org/10.1109/csaiee54046.2021.9543403.
Full textHu, Chenge, Huaqing Zhang, Yuyu Zhou, and Ruixin Guan. "Measuring Hilbert-Schmidt Independence Criterion with Different Kernels." In 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE). IEEE, 2021. http://dx.doi.org/10.1109/csaiee54046.2021.9543403.
Full textLi, Jue, Yuhua Qian, Jieting Wang, and Saixiong Liu. "PHSIC against Random Consistency and Its Application in Causal Inference." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/233.
Full textShan, Zijuan, Zhenyu Ni, and Zhengzhi Li. "Improvement of the properties of SISAM using the theory of Hilbert and Schmidt." In OSA Annual Meeting. Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thaa1.
Full textBrivadis, Lucas, Antoine Chaillet, and Jean Auriol. "Online estimation of Hilbert-Schmidt operators and application to kernel reconstruction of neural fields." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992414.
Full textYokoi, Sho, Daichi Mochihashi, Ryo Takahashi, Naoaki Okazaki, and Kentaro Inui. "Learning Co-Substructures by Kernel Dependence Maximization." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/465.
Full text