Academic literature on the topic 'Hilbert spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hilbert spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hilbert spaces"

1

Bellomonte, Giorgia, and Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces." Monatshefte für Mathematik 164, no. 3 (2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CHITESCU, ION, RAZVAN-CORNEL SFETCU, and OANA COJOCARU. "Kothe-Bochner spaces that are Hilbert spaces." Carpathian Journal of Mathematics 33, no. 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.

Full text
Abstract:
We are concerned with Kothe-Bochner spaces that are Hilbert spaces (resp. hilbertable spaces). It is shown that ¨ this is equivalent to the fact that, separately, Lρ and X are Hilbert spaces (resp. hilbertable spaces). The complete characterization of the Lρ spaces that are Hilbert spaces, given by the first-author, is used.
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Sumit Kumar, and Shashank Goel. "Frames in Quaternionic Hilbert Spaces." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 3 (2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sánchez, Félix Cabello. "Twisted Hilbert spaces." Bulletin of the Australian Mathematical Society 59, no. 2 (1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.

Full text
Abstract:
A Banach space X is called a twisted sum of the Banach spaces Y and Z if it has a subspace isomorphic to Y such that the corresponding quotient is isomorphic to Z. A twisted Hilbert space is a twisted sum of Hilbert spaces. We prove the following tongue-twister: there exists a twisted sum of two subspaces of a twisted Hilbert space that is not isomorphic to a subspace of a twisted Hilbert space. In other words, being a subspace of a twisted Hilbert space is not a three-space property.
APA, Harvard, Vancouver, ISO, and other styles
5

Pisier, Gilles. "Weak Hilbert Spaces." Proceedings of the London Mathematical Society s3-56, no. 3 (1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fabian, M., G. Godefroy, P. Hájek, and V. Zizler. "Hilbert-generated spaces." Journal of Functional Analysis 200, no. 2 (2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rudolph, Oliver. "Super Hilbert Spaces." Communications in Mathematical Physics 214, no. 2 (2000): 449–67. http://dx.doi.org/10.1007/s002200000281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ng, Chi-Keung. "Topologized Hilbert spaces." Journal of Mathematical Analysis and Applications 418, no. 1 (2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van den Boogaart, Karl Gerald, Juan José Egozcue, and Vera Pawlowsky-Glahn. "Bayes Hilbert Spaces." Australian & New Zealand Journal of Statistics 56, no. 2 (2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schmitt, L. M. "Semidiscrete Hilbert spaces." Acta Mathematica Hungarica 53, no. 1-2 (1989): 103–7. http://dx.doi.org/10.1007/bf02170059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hilbert spaces"

1

Wigestrand, Jan. "Inequalities in Hilbert Spaces." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.

Full text
Abstract:
<p>The main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then
APA, Harvard, Vancouver, ISO, and other styles
2

Ameur, Yacin. "Interpolation of Hilbert spaces." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.

Full text
Abstract:
(i) We prove that intermediate Banach spaces A, B with respect to arbitrary Hilbert couples H, K are exact interpolation iff they are exact K-monotonic, i.e. the condition f0∊A and the inequality K(t,g0;K)≤K(t,f0;H), t&gt;0 imply g0∊B and ||g0||B≤||f0||A (K is Peetre's K-functional). It is well-known that this property is implied by the following: for each ρ&gt;1 there exists an operator T : H→K such that Tf0=g0, and K(t,Tf;K)≤ρK(t,f;H), f∊H0+H1, t&gt;0.Verifying the latter property, it suffices to consider the "diagonal" case where H=K is finite-dimensional. In this case, we construct the rel
APA, Harvard, Vancouver, ISO, and other styles
3

Ameur, Yacin. "Interpolation of Hilbert spaces /." Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panayotov, Ivo. "Conjugate gradient in Hilbert spaces." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.

Full text
Abstract:
In this thesis, we examine the Conjugate Gradient algorithm for solving self-adjoint positive definite linear systems in Cn . We generalize the algorithm by proving a convergence result of Conjugate Gradient for self-adjoint positive definite operators in an arbitrary Hilbert space H. Then, we use the Maple software for symbolic manipulation to implement a general version of Conjugate Gradient and to demonstrate, by examples, that the algorithm can be used directly to solve problems in Hilbert spaces other than Cn .
APA, Harvard, Vancouver, ISO, and other styles
5

Bahmani, Fatemeh. "Ternary structures in Hilbert spaces." Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.

Full text
Abstract:
Ternary structures in Hilbert spaces arose in the study of in nite dimensional manifolds in di erential geometry. In this thesis, we develop a structure theory of Hilbert ternary algebras and Jordan Hilbert triples which are Hilbert spaces equipped with a ternary product. We obtain several new results on the classi - cation of these structures. Some results have been published in [2]. A Hilbert ternary algebra is a real Hilbert space (V; h ; i) equipped with a ternary product [ ; ; ] satisfying h[a; b; x]; yi = hx; [b; a; y]i for a; b; x and y in V . A Jordan Hilbert triple is a real Hilbert s
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Tushar. "Kleinian Groups in Hilbert Spaces." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.

Full text
Abstract:
The theory of discrete groups acting on finite dimensional Euclidean open balls by hyperbolic isometries was borne around the end of 19th century within the works of Fuchs, Klein and Poincaré. We develop the theory of discrete groups acting by hyperbolic isometries on the open unit ball of an infinite dimensional separable Hilbert space. We present our investigations on the geometry of limit sets at the sphere at infinity with an attempt to highlight the differences between the finite and infinite dimensional theories. We discuss the existence of fixed points of isometries and the classificati
APA, Harvard, Vancouver, ISO, and other styles
7

Harris, Terri Joan Mrs. "HILBERT SPACES AND FOURIER SERIES." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.

Full text
Abstract:
I give an overview of the basic theory of Hilbert spaces necessary to understand the convergence of the Fourier series for square integrable functions. I state the necessary theorems and definitions to understand the formulations of the problem in a Hilbert space framework, and then I give some applications of the theory along the way.
APA, Harvard, Vancouver, ISO, and other styles
8

Dieuleveut, Aymeric. "Stochastic approximation in Hilbert spaces." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.

Full text
Abstract:
Le but de l’apprentissage supervisé est d’inférer des relations entre un phénomène que l’on souhaite prédire et des variables « explicatives ». À cette fin, on dispose d’observations de multiples réalisations du phénomène, à partir desquelles on propose une règle de prédiction. L’émergence récente de sources de données à très grande échelle, tant par le nombre d’observations effectuées (en analyse d’image, par exemple) que par le grand nombre de variables explicatives (en génétique), a fait émerger deux difficultés : d’une part, il devient difficile d’éviter l’écueil du sur-apprentissage lorsq
APA, Harvard, Vancouver, ISO, and other styles
9

Boralugoda, Sanath Kumara. "Prox-regular functions in Hilbert spaces." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lapinski, Felicia. "Hilbert spaces and the Spectral theorem." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hilbert spaces"

1

Debnath, Lokenath. Hilbert spaces with applications. 3rd ed. Academic, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mlak, W. Hilbert spaces and operator theory. Boston, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Javad, Mashreghi, Ransford Thomas, and Seip Kristian 1962-, eds. Hilbert spaces of analytic functions. American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mashreghi, Javad. Hilbert spaces of analytic functions. American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mashreghi, Javad. Hilbert spaces of analytic functions. American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarason, Donald. Sub-Hardy Hilbert spaces in the unit disk. Wiley, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simon, Jacques. Banach, Fréchet, Hilbert and Neumann Spaces. John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Debnath, Lokenath. Introduction to Hilbert spaces with applications. Academic Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Debnath, Lokenath. Introduction to Hilbert spaces with applications. 2nd ed. Academic Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1964-, McCarthy John E., ed. Pick interpolation and Hilbert function spaces. American Mathematical Society, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hilbert spaces"

1

D’Angelo, John P. "Hilbert Spaces." In Hermitian Analysis. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roman, Steven. "Hilbert Spaces." In Advanced Linear Algebra. Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ovchinnikov, Sergei. "Hilbert Spaces." In Universitext. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cicogna, Giampaolo. "Hilbert Spaces." In Undergraduate Lecture Notes in Physics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gasquet, Claude, and Patrick Witomski. "Hilbert Spaces." In Texts in Applied Mathematics. Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1598-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Komornik, Vilmos. "Hilbert Spaces." In Lectures on Functional Analysis and the Lebesgue Integral. Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shima, Hiroyuki, and Tsuneyoshi Nakayama. "Hilbert Spaces." In Higher Mathematics for Physics and Engineering. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van der Vaart, Aad W., and Jon A. Wellner. "Hilbert Spaces." In Weak Convergence and Empirical Processes. Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brokate, Martin, and Götz Kersting. "Hilbert Spaces." In Compact Textbooks in Mathematics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kubrusly, Carlos S. "Hilbert Spaces." In Elements of Operator Theory. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hilbert spaces"

1

Wang, Haoran, Brian Scurlock, Andrew Kurdila, and Andrea L’Afflitto. "Robust, Nonparametric Backstepping Control over Reproducing Kernel Hilbert Spaces." In 2024 IEEE 63rd Conference on Decision and Control (CDC). IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gu, Boyan, Sheng Zheng, Xiaojun Mao, and Zhonglei Wang. "Transfer Learning via Functional Balancing in Reproducing Kernel Hilbert Spaces." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10889529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

RANDRIANANTOANINA, BEATA. "A CHARACTERIZATION OF HILBERT SPACES." In Proceedings of the Sixth Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704450_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taddei, Valentina, Luisa Malaguti, and Irene Benedetti. "Nonlocal problems in Hilbert spaces." In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Exploring Non-Newtonian Hilbert Spaces." In 2nd International Conference on Frontiers in Academic Research ICFAR 2023. All Sciences Academy, 2023. http://dx.doi.org/10.59287/as-proceedings.464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Wai-Shing. "Biorthogonality and multiwavelets in Hilbert spaces." In International Symposium on Optical Science and Technology, edited by Akram Aldroubi, Andrew F. Laine, and Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pope, Graeme, and Helmut Bolcskei. "Sparse signal recovery in Hilbert spaces." In 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Małkiewicz, Przemysław. "Physical Hilbert spaces in quantum gravity." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khimshiashvili, G. "Loop spaces and Riemann-Hilbert problems." In Geometry and Topology of Manifolds. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deepshikha, Saakshi Garg, Lalit K. Vashisht, and Geetika Verma. "On weaving fusion frames for Hilbert spaces." In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024363.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hilbert spaces"

1

Kearsley, Anthony J. Similarity Measures of Mass Spectra in Hilbert Spaces. National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.tn.2297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saraivanov, Michael. Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.1108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Korezlioglu, H., and C. Martias. Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada168501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukumizu, Kenji, Francis R. Bach, and Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada446572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Teolis, Anthony. Discrete Representation of Signals from Infinite Dimensional Hilbert Spaces with Application to Noise Suppression and Compression. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada453215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Salamon, Dietmar. Realization Theory in Hilbert Space. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada158172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, Jen-Chih. A monotone complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/7043013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yao, Jen-Chih. A generalized complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6930669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cottle, Richard W., and Jen-Chih Yao. Pseudo-Monotone Complementarity Problems in Hilbert Space. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada226477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brown, Benjamin. Special Gravity #3 - The Cosmic Hilbert Space. ResearchHub Technologies, Inc., 2023. http://dx.doi.org/10.55277/researchhub.7hpy1d9t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!