Academic literature on the topic 'Hilbert’s Nullstellensatz'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hilbert’s Nullstellensatz.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hilbert’s Nullstellensatz"

1

Reyes, Armando, and Jason Hernández-Mogollón. "A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type." Ingeniería y Ciencia 16, no. 31 (2020): 27–52. http://dx.doi.org/10.17230/ingciencia.16.31.2.

Full text
Abstract:
In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry.
APA, Harvard, Vancouver, ISO, and other styles
2

Pati, Vishwambhar. "Hilbert’s Nullstellensatz and the beginning of algebraic geometry." Resonance 4, no. 8 (1999): 36–57. http://dx.doi.org/10.1007/bf02837067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De Loera, Jesús A., Jon Lee, Peter N. Malkin, and Susan Margulies. "Computing infeasibility certificates for combinatorial problems through Hilbert’s Nullstellensatz." Journal of Symbolic Computation 46, no. 11 (2011): 1260–83. http://dx.doi.org/10.1016/j.jsc.2011.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shub, Michael, and Steve Smale. "On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “ $NP\not=P$? ”." Duke Mathematical Journal 81, no. 1 (1995): 47–54. http://dx.doi.org/10.1215/s0012-7094-95-08105-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MacCaull, W. A. "Hilbert's nullstellensatz revisited." Journal of Pure and Applied Algebra 54, no. 2-3 (1988): 289–97. http://dx.doi.org/10.1016/0022-4049(88)90035-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LOERA, J. A., J. LEE, S. MARGULIES, and S. ONN. "Expressing Combinatorial Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz." Combinatorics, Probability and Computing 18, no. 4 (2009): 551–82. http://dx.doi.org/10.1017/s0963548309009894.

Full text
Abstract:
Systems of polynomial equations over the complex or real numbers can be used to model combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colourable, Hamiltonian, etc.) if and only if a related system of polynomial equations has a solution.For an infeasible polynomial system, the (complex) Hilbert Nullstellensatz gives a certificate that the associated combinatorial problem is infeasible. Thus, unless P = NP, there must exist an infinite sequence of infeasible instances of each hard combinatorial problem for which the minimum degree of a Hilbert Nullste
APA, Harvard, Vancouver, ISO, and other styles
7

KAUCIKAS, ALGIRDAS, and ROBERT WISBAUER. "NONCOMMUTATIVE HILBERT RINGS." Journal of Algebra and Its Applications 03, no. 04 (2004): 437–43. http://dx.doi.org/10.1142/s0219498804000964.

Full text
Abstract:
Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ide
APA, Harvard, Vancouver, ISO, and other styles
8

Finocchiaro, Carmelo A., Marco Fontana, and Dario Spirito. "A topological version of Hilbert's Nullstellensatz." Journal of Algebra 461 (September 2016): 25–41. http://dx.doi.org/10.1016/j.jalgebra.2016.04.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perri, Tal, and Louis H. Rowen. "Kernels in tropical geometry and a Jordan–Hölder theorem." Journal of Algebra and Its Applications 17, no. 04 (2018): 1850066. http://dx.doi.org/10.1142/s0219498818500664.

Full text
Abstract:
When considering affine tropical geometry, one often works over the max-plus algebra (or its supertropical analog), which, lacking negation, is a semifield (respectively, [Formula: see text]-semifield) rather than a field. One needs to utilize congruences rather than ideals, leading to a considerably more complicated theory. In his dissertation, the first author exploited the multiplicative structure of an idempotent semifield, which is a lattice ordered group, in place of the additive structure, in order to apply the extensive theory of chains of homomorphisms of groups. Reworking his dissert
APA, Harvard, Vancouver, ISO, and other styles
10

Koiran, Pascal. "Hilbert's Nullstellensatz Is in the Polynomial Hierarchy." Journal of Complexity 12, no. 4 (1996): 273–86. http://dx.doi.org/10.1006/jcom.1996.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hilbert’s Nullstellensatz"

1

Rigolli, Lorenzo. "Hilbert Nullstellensatz e alcune sue conseguenze geometriche." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amslaurea.unibo.it/2505/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berthet, Jean. "Contributions à l’étude algébrique et géométrique des structures et théories du premier ordre." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10266/document.

Full text
Abstract:
La notion de T-radical d’un idéal permet à G.Cherlin de démontrer un Nullstellensatz dans les théories inductives d’anneaux. Nous proposons une analyse modèle-théorique de phénomènes connexes. En premier lieu, une réciproque de ce théorème nous conduit à une caractérisation des corps algébriquement clos, suggérant une version “positive” du travail de Cherlin, la théorie des idéaux T-radiciels. Ceux-ci se caractérisent par un théorème de représentation et sont associés à un théorème des zéros “positif”. Ces résultats se généralisent à la logique du premier ordre : grâce à la notion de classe sp
APA, Harvard, Vancouver, ISO, and other styles
3

Amendola, Teresa. "Basi di Gröbner e anelli polinomiali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19458/.

Full text
Abstract:
In questo elaborato ci proponiamo di fornire alcuni strumenti utili per illustrare il collegamento tra varietà affini e ideali polinomiali. La tesi segue l'approccio computazionale e sfrutta quindi alcuni algoritmi per la dimostrazione dei risultati principali. Si prova il Teorema della Base di Hilbert e si introducono le basi di Gröbner per la dimostrazione del Nullstellensatz.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hilbert’s Nullstellensatz"

1

Kemper, Gregor. "Hilbert’s Nullstellensatz." In Graduate Texts in Mathematics. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03545-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lang, Serge. "Hilbert’s Nullstellensatz in Infinite-Dimensional Space." In Collected Papers. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2118-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lang, Serge. "Hilbert’s Nullstellensatz in Infinite Dimensional Space." In Collected Papers I. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-7383-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lipton, Richard J., and Kenneth W. Regan. "David Hilbert: The Nullstellensatz." In People, Problems, and Proofs. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41422-0_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Becker, Thomas, and Volker Weispfenning. "Field Extensions and the Hilbert Nullstellensatz." In Gröbner Bases. Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0913-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Hilbert’s Nullstellensatz." In An Invitation to Model Theory. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781316683002.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"V.17 Hilbert’s Nullstellensatz." In The Princeton Companion to Mathematics. Princeton University Press, 2010. http://dx.doi.org/10.1515/9781400830398.703a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brownawell, W. Dale. "Aspects of the Hilbert Nullstellensatz." In New Advances in Transcendence Theory. Cambridge University Press, 1988. http://dx.doi.org/10.1017/cbo9780511897184.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"21. The Hilbert basis theorem and the nullstellensatz." In Abstract Algebra. De Gruyter, 2019. http://dx.doi.org/10.1515/9783110603996-021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"21 The Hilbert Basis Theorem and the Nullstellensatz." In Abstract Algebra. DE GRUYTER, 2011. http://dx.doi.org/10.1515/9783110250091.312.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hilbert’s Nullstellensatz"

1

Li, Zijia, and Andreas Mueller. "Mechanism Singularities Revisited From an Algebraic Viewpoint." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97742.

Full text
Abstract:
Abstract It has become obvious that certain singular phenomena cannot be explained by a mere investigation of the configuration space, defined as the solution set of the loop closure equations. For example, it was observed that a particular 6R linkage, constructed by combination of two Goldberg 5R linkages, exhibits kinematic singularities at a smooth point in its configuration space. Such problems are addressed in this paper. To this end, an algebraic framework is used in which the constraints are formulated as polynomial equations using Study parameters. The algebraic object of study is the
APA, Harvard, Vancouver, ISO, and other styles
2

Kapur, Deepak. "Geometry theorem proving using Hilbert's Nullstellensatz." In the fifth ACM symposium. ACM Press, 1986. http://dx.doi.org/10.1145/32439.32479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De Loera, J. A., J. Lee, P. N. Malkin, and S. Margulies. "Hilbert's nullstellensatz and an algorithm for proving combinatorial infeasibility." In the twenty-first international symposium. ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!