To see the other types of publications on this topic, follow the link: Hippocampe (anatomie) – Physiologie.

Journal articles on the topic 'Hippocampe (anatomie) – Physiologie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 journal articles for your research on the topic 'Hippocampe (anatomie) – Physiologie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hsia, Albert Y., Robert C. Malenka, and Roger A. Nicoll. "Development of Excitatory Circuitry in the Hippocampus." Journal of Neurophysiology 79, no. 4 (April 1, 1998): 2013–24. http://dx.doi.org/10.1152/jn.1998.79.4.2013.

Full text
Abstract:
Hsia, Albert Y., Robert C. Malenka, and Roger A. Nicoll. Development of excitatory circuitry in the hippocampus. J. Neurophysiol. 79: 2013–2024, 1998. Assessing the development of local circuitry in the hippocampus has relied primarily on anatomic studies. Here we take a physiological approach, to directly evaluate the means by which the mature state of connectivity between CA3 and CA1 hippocampal pyramidal cells is established. Using a technique of comparing miniature excitatory postsynaptic currents (mEPSCs) to EPSCs in response to spontaneously occurring action potentials in CA3 cells, we found that from neonatal to adult ages, functional synapses are created and serve to increase the degree of connectivity between CA3-CA1 cell pairs. Neither the probability of release nor mean quantal size was found to change significantly with age. However, the variability of quantal events decreases substantially as synapses mature. Thus in the hippocampus the developmental strategy for enhancing excitatory synaptic transmission does not appear to involve an increase in the efficacy at individual synapses, but rather an increase in the connectivity between cell pairs.
APA, Harvard, Vancouver, ISO, and other styles
2

Sabolek, Helen R., Stephanie C. Penley, James R. Hinman, Jamie G. Bunce, Etan J. Markus, Monty Escabi, and James J. Chrobak. "Theta and Gamma Coherence Along the Septotemporal Axis of the Hippocampus." Journal of Neurophysiology 101, no. 3 (March 2009): 1192–200. http://dx.doi.org/10.1152/jn.90846.2008.

Full text
Abstract:
Theta and gamma rhythms synchronize neurons within and across brain structures. Both rhythms are widespread within the hippocampus during exploratory behavior and rapid-eye-movement (REM) sleep. How synchronous are these rhythms throughout the hippocampus? The present study examined theta and gamma coherence along the septotemporal (long) axis of the hippocampus in rats during REM sleep, a behavioral state during which theta signals are unaffected by external sensory input or ongoing behavior. Unilateral entorhinal cortical inputs are thought to play a prominent role in the current generation of theta, whereas current generation of gamma is primarily due to local GABAergic neurons. The septal 50% (4–5 mm) of the dentate gyrus (DG) receives a highly divergent, unilateral projection from any focal point along a lateral band of entorhinal neurons near the rhinal sulcus. We hypothesized that theta coherence in the target zone (septal DG) of this divergent entorhinal input would not vary, while gamma coherence would significantly decline with distance in this zone. However, both theta and gamma coherence decreased significantly along the long axis in the septal 50% of the hippocampus across both DG and CA1 electrode sites. In contrast, theta coherence between homotypic (e.g., DG to DG) sites in the contralateral hemisphere (∼3–5 mm distant) were quite high (∼0.7–0.9), much greater than theta coherence between homotypic sites 3–5 mm distant (∼0.4–0.6) along the long axis. These findings define anatomic variation in both rhythms along the longitudinal axis of the hippocampus, indicate the bilateral CA3/mossy cell projections are the major determinant of theta coherence during REM, and demonstrate that theta coherence varies as a function of anatomical connectivity rather than physical distance. We suggest CA3 and entorhinal inputs interact dynamically to generate theta field potentials and advance the utility of theta and gamma coherence as indicators of hippocampal dynamics.
APA, Harvard, Vancouver, ISO, and other styles
3

Carnevale, Nicholas T., Kenneth Y. Tsai, Brenda J. Claiborne, and Thomas H. Brown. "Comparative Electrotonic Analysis of Three Classes of Rat Hippocampal Neurons." Journal of Neurophysiology 78, no. 2 (August 1, 1997): 703–20. http://dx.doi.org/10.1152/jn.1997.78.2.703.

Full text
Abstract:
Carnevale, Nicholas T., Kenneth Y. Tsai, Brenda J. Claiborne, and Thomas H. Brown. Comparative electrotonic analysis of three classes of rat hippocampal neurons. J. Neurophysiol. 78: 703–720, 1997. We present a comparative analysis of electrotonus in the three classes of principal neurons in rat hippocampus: pyramidal cells of the CA1 and CA3c fields of the hippocampus proper, and granule cells of the dentate gyrus. This analysis used the electrotonic transform, which combines anatomic and biophysical data to map neuronal anatomy into electrotonic space, where physical distance between points is replaced by the logarithm of voltage attenuation (log A). The transforms were rendered as “neuromorphic figures” by redrawing the cell with branch lengths proportional to log A along each branch. We also used plots of log A versus anatomic distance from the soma; these reveal features that are otherwise less apparent and facilitate comparisons between dendritic fields of different cells. Transforms were always larger for voltage spreading toward the soma ( V in) than away from it ( V out). Most of the electrotonic length in V out transforms was along proximal large diameter branches where signal loss for somatofugal voltage spread is greatest. In V in transforms, more of the length was in thin distal branches, indicating a steep voltage gradient for signals propagating toward the soma. All transforms lengthened substantially with increasing frequency. CA1 neurons were electrotonically significantly larger than CA3c neurons. Their V out transforms displayed one primary apical dendrite, which bifurcated in some cases, whereas CA3c cell transforms exhibited multiple apical branches. In both cell classes, basilar dendrite V out transforms were small, indicating that somatic potentials reached their distal ends with little attenuation. However, for somatopetal voltage spread, attenuation along the basilar and apical dendrites was comparable, so the V in transforms of these dendritic fields were nearly equal in extent. Granule cells were physically and electrotonically most compact. Their V out transforms at 0 Hz were very small, indicating near isopotentiality at DC and low frequencies. These transforms resembled those of the basilar dendrites of CA1 and CA3c pyramidal cells. This raises the possibility of similar functional or computational roles for these dendritic fields. Interpreting the anatomic distribution of thorny excrescences on CA3 pyramidal neurons with this approach indicates that synaptic currents generated by some mossy fiber inputs may be recorded accurately by a somatic patch clamp, providing that strict criteria on their time course are satisfied. Similar accuracy may not be achievable in somatic recordings of Schaffer collateral synapses onto CA1 pyramidal cells in light of the anatomic and biophysical properties of these neurons and the spatial distribution of synapses.
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, K. L., D. H. Szarowski, J. N. Turner, and J. W. Swann. "Diverse neuronal populations mediate local circuit excitation in area CA3 of developing hippocampus." Journal of Neurophysiology 74, no. 2 (August 1, 1995): 650–72. http://dx.doi.org/10.1152/jn.1995.74.2.650.

Full text
Abstract:
1. Studies were undertaken to better understand why the developing hippocampus has a marked capacity to generate prolonged synchronized discharges when exposed to gamma-aminobutyric acid-A (GABAA) receptor antagonists. 2. Excitatory synaptic interactions were studied in small microdissected segments of hippocampal area CA3. Slices were obtained from 10- to 16-day-old rats. Application of the GABAA receptor antagonist penicillin produced prolonged synchronized discharges in minislices that were very similar, if not identical, to those recorded in intact slices. The sizes of minislices were systematically varied. Greater than 90% of those that measured 600 microns along the cell body layer produced prolonged synchronized discharges, whereas most minislices measuring 300 microns produced only brief interictal spikes. 3. Action potentials in the majority (75%, 158 of 254) of cells impaled with microelectrodes were able to entrain the entire CA3 population. They were also able to increase (on average 26%) the frequency of spontaneous population discharges. The population discharges were followed by a refractory period that lasted 5–60 s, during which single cells were unable to initiate a population discharge. 4. The majority (87%) of neurons with intrinsic burst properties were found to entrain the CA3 population. The electrophysiological characteristics of these cells were reminiscent of recordings obtained from more mature rats. Action potentials were quite prolonged and demonstrated a secondary shoulder or hump on the down-slope of the spike. 5. When bursting cells were filled with Lucifer yellow and imaged during recording sessions by videomicroscopy and later using confocal microscopy, they showed the anatomic features of CA3 hippocampal pyramidal cells. Confocal microscopy permitted detailed characterization of individual neurons and showed substantial variation in cellular microanatomy. 6. Another class of cells that were found to entrain the CA3 population but did not demonstrate intrinsic bursts were termed regular-firing cells. These cells possessed many of the anatomic and physiological features of bursting cells with the exception of burst firing. They were rarely encountered in intracellular recordings. 7. The third physiological class of cells was termed fast-spiking cells. These had action potentials that were shorter in duration than the other two cell types. They were distinct in the rapid rate of spike repolarization. They demonstrated modest degrees of spike frequency adaptation and fired repeatedly and at relatively high frequencies. Compared with reports on fast-spiking cells in mature hippocampus and neocortex, action potentials appear to be slower and repetitive discharging appeared to be of a lower frequency.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
5

Biella, Gerardo, and Marco de Curtis. "Olfactory Inputs Activate the Medial Entorhinal Cortex Via the Hippocampus." Journal of Neurophysiology 83, no. 4 (April 1, 2000): 1924–31. http://dx.doi.org/10.1152/jn.2000.83.4.1924.

Full text
Abstract:
The lateral and medial regions of the entorhinal cortex differ substantially in terms of connectivity and pattern of activation. With regard to olfactory input, a detailed and extensive physiological map of the olfactory projection to the entorhinal cortex is missing, even if anatomic studies suggest that the olfactory afferents are confined to the lateral and rostral entorhinal region. We studied the contribution of the medial and lateral entorhinal areas to olfactory processing by analyzing the responses induced by lateral olfactory tract stimulation in different entorhinal subfields of the in vitro isolated guinea pig brain. The pattern of synaptic activation of the medial and lateral entorhinal regions was reconstructed either by performing simultaneous multisite recordings or by applying current source density analysis on field potential laminar profiles obtained with 16-channel silicon probes. Current source density analysis demonstrated the existence of a direct monosynaptic olfactory input into the superficial 300 μm of the most rostral part of the lateral entorhinal cortex exclusively, whereas disynaptic sinks mediated by associative fibers arising from the piriform cortex were observed at 100–350 μm depth in the entire lateral aspect of the cortex. No local field responses were recorded in the medial entorhinal region unless a large population spike was generated in the hippocampus (dentate gyrus and CA1 region) by a stimulus 3–5× the intensity necessary to obtain a maximal monosynaptic response in the piriform cortex. In these conditions, a late sink was recorded at a depth of 600-1000 μm in the medial entorhinal area (layers III–V) 10.6 ± 0.9 (SD) msec after a population spike was simultaneously recorded in CA1. Diffuse activation of the medial entorhinal region was also obtained by repetitive low-intensity stimulation of the lateral olfactory tract at 2–8 Hz. Higher or lower stimulation frequencies did not induce hippocampal-medial entorhinal cortex activation. These results suggest that the medial and the lateral entorhinal regions have substantially different roles in processing olfactory sensory inputs.
APA, Harvard, Vancouver, ISO, and other styles
6

Abrous, Djoher Nora, Muriel Koehl, and Michel Le Moal. "Adult Neurogenesis: From Precursors to Network and Physiology." Physiological Reviews 85, no. 2 (April 2005): 523–69. http://dx.doi.org/10.1152/physrev.00055.2003.

Full text
Abstract:
The discovery that the adult mammalian brain creates new neurons from pools of stemlike cells was a breakthrough in neuroscience. Interestingly, this particular new form of structural brain plasticity seems specific to discrete brain regions, and most investigations concern the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation (HF). Overall, two main lines of research have emerged over the last two decades: the first aims to understand the fundamental biological properties of neural stemlike cells (and their progeny) and the integration of the newly born neurons into preexisting networks, while the second focuses on understanding its relevance in brain functioning, which has been more extensively approached in the DG. Here, we propose an overview of the current knowledge on adult neurogenesis and its functional relevance for the adult brain. We first present an analysis of the methodological issues that have hampered progress in this field and describe the main neurogenic sites with their specificities. We will see that despite considerable progress, the levels of anatomic and functional integration of the newly born neurons within the host circuitry have yet to be elucidated. Then the intracellular mechanisms controlling neuronal fate are presented briefly, along with the extrinsic factors that regulate adult neurogenesis. We will see that a growing list of epigenetic factors that display a specificity of action depending on the neurogenic site under consideration has been identified. Finally, we review the progress accomplished in implicating neurogenesis in hippocampal functioning under physiological conditions and in the development of hippocampal-related pathologies such as epilepsy, mood disorders, and addiction. This constitutes a necessary step in promoting the development of therapeutic strategies.
APA, Harvard, Vancouver, ISO, and other styles
7

Berényi, Antal, Zoltán Somogyvári, Anett J. Nagy, Lisa Roux, John D. Long, Shigeyoshi Fujisawa, Eran Stark, Anthony Leonardo, Timothy D. Harris, and György Buzsáki. "Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals." Journal of Neurophysiology 111, no. 5 (March 1, 2014): 1132–49. http://dx.doi.org/10.1152/jn.00785.2013.

Full text
Abstract:
Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function.
APA, Harvard, Vancouver, ISO, and other styles
8

Lynch, Michael, and Thomas Sutula. "Recurrent Excitatory Connectivity in the Dentate Gyrus of Kindled and Kainic Acid–Treated Rats." Journal of Neurophysiology 83, no. 2 (February 1, 2000): 693–704. http://dx.doi.org/10.1152/jn.2000.83.2.693.

Full text
Abstract:
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABAAreceptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 μM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid–induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after ≥1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABAA receptor–dependent recurrent inhibitory circuits and 10 mM [Ca2+]o to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats ( n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 ± 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiang, Zixiu, and Thomas H. Brown. "Complex Synaptic Current Waveforms Evoked in Hippocampal Pyramidal Neurons by Extracellular Stimulation of Dentate Gyrus." Journal of Neurophysiology 79, no. 5 (May 1, 1998): 2475–84. http://dx.doi.org/10.1152/jn.1998.79.5.2475.

Full text
Abstract:
Xiang, Zixiu and Thomas H. Brown. Complex synaptic current waveforms evoked in hippocampal pyramidal neurons by extracellular stimulation of dentate gyrus. J. Neurophysiol. 79: 2475–2484, 1998. Excitatory postsynaptic currents (EPSCs) evoked in hippocampal CA3 pyramidal neurons by extracellular stimulation of the dentate gyrus typically exhibit complex waveforms. They commonly have inflections or notches on the rising phase; the decay phase may exhibit notches or other obvious departures from a simple monoexponential decline; they often display considerable variability in the latency from stimulation to the peak current; and the rise times tend to be long. One hypothesis is that these complex EPSC waveforms might result from excitation via other CA3 pyramidal cells that were recruited antidromically or trans-synaptically by the stimulus due to the complex anatomy of this region. An alternative hypothesis is that EPSC complexity does not emerge from the functional anatomy but rather reflects an unusual physiological property, intrinsic to excitation-secretion coupling in mossy-fiber (mf) synaptic terminals, that causes asynchronous quantal release. We evaluated certain predictions of our anatomic hypothesis by adding a pharmacological agent to the normal bathing medium that should suppress di- or polysynaptic responses. For this purpose we used baclofen (3 μM), a selective agonist for the γ-aminobutyric acid B receptor. The idea was that baclophen should discriminate against polysynaptic versus monosynaptic inputs by hyperpolarizing the cells, bringing them further from spike threshold and possibly also through inhibitory presynaptic actions. Whole cell recordings were done from visually preselected CA3 pyramidal neurons and EPSCs were evoked by fine bipolar electrodes positioned into the granule cell layer of the dentate. To the extent that the EPSC complexity reflects di- or polysynaptic responses, we predicted baclofen to reduce the number of notches on the rising and decay phases, reduce the variance in latency to peak of the EPSCs, decrease the amplitudes and rise times of the individual and averaged EPSCs, and increase the apparent failures in evoked EPSCs. All of these predictions were confirmed, in support of the hypothesis that these complex EPSC waveforms commonly reflect di- or polysynaptic responses. We also documented a distinctly different, intermittent, form of EPSC complexity, which also is predicted and easily explained by our anatomic hypothesis. In particular, the results were in accord with the suggestion that stimulation of the dentate gyrus might antidromically stimulate axon collaterals of CA3 neurons that make recurrent synapses onto the recorded cell. We conclude that the overall pattern of results is consistent with expectations based on the functional anatomy. The explanation does not demand a special type of intrinsic asynchronous mechanism for excitation-secretion coupling in the mf synapses.
APA, Harvard, Vancouver, ISO, and other styles
10

Buckmaster, Paul S., and F. Edward Dudek. "Network Properties of the Dentate Gyrus in Epileptic Rats With Hilar Neuron Loss and Granule Cell Axon Reorganization." Journal of Neurophysiology 77, no. 5 (May 1, 1997): 2685–96. http://dx.doi.org/10.1152/jn.1997.77.5.2685.

Full text
Abstract:
Buckmaster, Paul S. and F. Edward Dudek. Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J. Neurophysiol. 77: 2685–2696, 1997. Neuron loss in the hilus of the dentate gyrus and granule cell axon reorganization have been proposed as etiologic factors in human temporal lobe epilepsy. To explore these possible epileptogenic mechanisms, electrophysiological and anatomic methods were used to examine the dentate gyrus network in adult rats that had been treated systemically with kainic acid. All kainate-treated rats, but no age-matched vehicle-treated controls, were observed to have spontaneous recurrent motor seizures beginning weeks to months after exposure to kainate. Epileptic kainate-treated rats and control animals were anesthetized for field potential recording from the dentate gyrus in vivo. Epileptic kainate-treated rats displayed spontaneous positivities (“dentate electroencephalographic spikes”) with larger amplitude and higher frequency than those in control animals. After electrophysiological recording, rats were perfused and their hippocampi were processed for Nissl and Timm staining. Epileptic kainate-treated rats displayed significant hilar neuron loss and granule cell axon reorganization. It has been hypothesized that hilar neuron loss reduces lateral inhibition in the dentate gyrus, thereby decreasing seizure threshold. To assess lateral inhibition, simultaneous recordings were obtained from the dentate gyrus in different hippocampal lamellae, separated by 1 mm. The perforant path was stimulated with paired-pulse paradigms, and population spike amplitudes were measured. Responses were obtained from one lamella while a recording electrode in a distant lamella leaked saline or the γ-aminobutyric acid-A receptor antagonist bicuculline. Epileptic kainate-treated and control rats both showed significantly more paired-pulse inhibition when a lateral lamella was hyperexcitable. To assess seizure threshold in the dentate gyrus, two techniques were used. Measurement of stimulus threshold for evoking maximal dentate activation revealed significantly higher thresholds in epileptic kainate-treated rats compared with controls. In contrast, epileptic kainate-treated rats were more likely than controls to discharge spontaneous bursts of population spikes and to display stimulus-triggered afterdischarges when a focal region of the dentate gyrus was disinhibited with bicuculline. These spontaneous bursts and afterdischarges were confined to the disinhibited region and did not spread to other septotemporal levels of the dentate gyrus. Epileptic kainate-treated rats that displayed spontaneous bursts and/or afterdischarges had significantly larger percentages of Timm staining in the granule cell and molecular layers than epileptic kainate-treated rats that failed to show spontaneous bursts or afterdischarges. In summary, this study reveals functional abnormalities in the dentate gyri of epileptic kainate-treated rats; however, lateral inhibition persists, suggesting that vulnerable hilar neurons are not necessary for generating lateral inhibition in the dentate gyrus.
APA, Harvard, Vancouver, ISO, and other styles
11

Simmons, M. L., G. W. Terman, C. T. Drake, and C. Chavkin. "Inhibition of glutamate release by presynaptic kappa 1-opioid receptors in the guinea pig dentate gyrus." Journal of Neurophysiology 72, no. 4 (October 1, 1994): 1697–705. http://dx.doi.org/10.1152/jn.1994.72.4.1697.

Full text
Abstract:
1. Activation of kappa 1-opioid receptors inhibits excitatory transmission in the hippocampal dentate gyrus of the guinea pig. The present studies used both anatomic and physiological approaches to distinguish between a pre- and postsynaptic localization of these receptors. 2. The entorhinal cortex was lesioned unilaterally to cause degeneration of perforant path afferents to the dentate molecular layer, and kappa 1-opioid binding sites were measured by labeling with the selective agonist, [3H]-U69593. Binding density was reduced significantly in the dentate gyrus molecular layer ipsilateral to the lesion compared with the contralateral molecular layer and with sham-lesioned controls. 3. Paired-pulse facilitation is a neurophysiologic paradigm that has been used to differentiate pre- and postsynaptic sites of action for agents that inhibit excitatory neurotransmission. U69593 reduced the amplitude of single population spikes and increased the degree of paired pulse facilitation. The potentiation of paired-pulse facilitation was maintained when the stimulation intensity was increased to compensate for the inhibition of excitatory transmission. These effects of kappa 1-receptor activation were similar to those seen after presynaptic inhibition of excitatory neurotransmitter release and support the hypothesis that U69593 presynaptically inhibits excitatory amino acid release in the dentate gyrus. 4. Local application of glutamate by pressure ejection in the dentate molecular layer evoked field excitatory postsynaptic potentials that mimicked those evoked by electrical stimulation of the perforant path. Both responses were sensitive to the non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione. U69593 inhibited responses evoked by perforant path stimulation but had no effect on responses evoked by glutamate application.(ABSTRACT TRUNCATED AT 250 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
12

Rempe, D. A., P. S. Mangan, and E. W. Lothman. "Regional heterogeneity of pathophysiological alterations in CA1 and dentate gyrus in a chronic model of temporal lobe epilepsy." Journal of Neurophysiology 74, no. 2 (August 1, 1995): 816–28. http://dx.doi.org/10.1152/jn.1995.74.2.816.

Full text
Abstract:
1. Extracellular and intracellular recording techniques were employed in brain slice preparations to characterize responses of hippocampal tissue in the post-self sustaining limbic status epilepticus (post-SSLSE) model of chronic temporal lobe epilepsy (TLE) as compared with responses in slices from control animals. Experiments were performed > or = 1 mo, and up to 7 mo, after status epilepticus. Two regions of the hippocampal formation linked to different aspects of epileptogenesis, the CA1 region and the dentate gyrus (DG), were studied. In any given experiment, CA1 and DG were examined in different slices from the same animal. 2. Pyramidal cells in CA1 were activated by means of electrodes positioned over fiber bundles that monosynaptically project to these cells, either those located in the stratum lacunosum/moleculare or those in the stratum radiatum. Granule cells were similarly activated by electrodes positioned in the perforant path. Full input-output curves were determined by varying stimulus strength and charting the amplitudes of population spikes (PSs). 3. Two indexes, stimulus sensitivity and responsiveness, were quantified in control tissue and in post-SSLSE tissue by means of input-output curves to provide comparisons between normal and epileptic tissue. There were no changes in stimulus sensitivity, defined as the stimulus intensity required to evoke comparable responses in input-output curves, between control and post-SSLSE tissue. However, responsiveness, defined as the number of extracellular PSs or intracellular action potentials (APs) elicited by a stimulus strength giving rise to maximal-amplitude PSs, proved a reliable method for identifying and categorizing epileptic responses. This index allowed for comparisons between anatomic regions within an experiment as well as among experiments for the same region. Both CA1 pyramidal cells and DG granule cells from post-SSLSE tissue showed hyperresponsiveness relative to control tissue. 4. Control tissue never exhibited > 2 PSs in either CA1 or DG in response to stimuli that produced maximal-amplitude PSs. Therefore a criterion of > or = 3 PSs was adopted to delineate tissue as hyperresponsive on the basis of extracellular responses. In CA1 about one half of the post-SSLSE slices displayed > or = 3 PSs with stimuli giving maximal-amplitude PSs, meeting the criterion for hyperresponsiveness; in DG about one fifth of the slices showed hyperresponsiveness. 5. CA1 and DG differed with respect to the spectrum of hyperresponsiveness they exhibited, this being more robust in CA1. The two regions studied also showed heterogeneity with respect to maximal PS amplitudes.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
13

Yecies, Derek W., Rogelio Esparza, Tej Deepak Azad, Jennifer L. Quon, Nils Forkert, Sarah Maceachern, Samuel Henry Cheshier, Michael S. B. Edwards, Gerald A. Grant, and Kristen Yeom. "136 Long-term Supratentorial Radiographic Effects of Surgery and Local Radiation in Children with Infratenorial Ependymoma." Neurosurgery 64, CN_suppl_1 (August 24, 2017): 231–32. http://dx.doi.org/10.1093/neuros/nyx417.136.

Full text
Abstract:
Abstract INTRODUCTION Current standard of care for children with an infratentorial ependymoma includes maximal safe resection with local radiation of 54–59gy. High-dose local radiation has been associated with decline in multiple cognitive domains. The anatomic correlates of this cognitive decline remain undefined and there have been no radiographic studies on the long-term effects of this treatment paradigm. METHODS A comprehensive database of pediatric brain tumor patients treated at Stanford Children's from 2004–2016 was queried. 7 patients with posterior fossa ependymoma were identified who were treated with surgery and local radiation alone, who had no evidence of recurrent disease, and had imaging suitable for analysis. Diffusion-weighted MRI (DWI) datasets were used to calculate apparent diffusion coefficient (ADC) maps for each subject, while arterial spin labeling (ASL) datasets were used to calculated maps of cerebral blood flow (CBF). Using an atlas-based approach, the following brain structures were automatically segmented: cerebral white matter, cerebral cortex, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Furthermore, DWI and ASL datasets of 52 age-matched healthy children were available and analyzed in the same fashion to enable group comparisons. Binomial logistic regression models were developed for CBF and ADC measurements with disease status as a binary response variable and a significance threshold of P < 0.05. RESULTS >Several statistically significant differences were detected between the two groups. CBF was lower in the caudate (OR = .424 95%CI.142-.838 p = .05) and pallidum (OR = .479 95%CI = .204-.808 p = .029) and higher in the accumbens (OR = 1.917 95%CI = 1.182-4.472 p = .046) in the ependymoma cohort compared to controls. ADC was increased in the thalamus (OR = 1.168 95%CI = 1.040-1.407 p = .027) and trended towards decreased in the amygdala (OR = .93 95%CI = .846-.996 P = 0.068). CONCLUSION Surgery and local radiation for posterior fossa ependymoma are associated with supratentorial ADC and CBF alterations which may represent an anatomical and physiologic correlate to the previously published decline in neurocognitive outcomes in this population.
APA, Harvard, Vancouver, ISO, and other styles
14

Pavlidis, Paul, and Daniel V. Madison. "Synaptic Transmission in Pair Recordings From CA3 Pyramidal Cells in Organotypic Culture." Journal of Neurophysiology 81, no. 6 (June 1, 1999): 2787–97. http://dx.doi.org/10.1152/jn.1999.81.6.2787.

Full text
Abstract:
Synaptic transmission in pair recordings from CA3 pyramidal cells in organotypic culture. We performed simultaneous whole cell recordings from pairs of monosynaptically coupled hippocampal CA3 pyramidal neurons in organotypic slices. Stimulation of an action potential in a presynaptic cell resulted in an AMPA-receptor-mediated excitatory postsynaptic current (EPSC) in the postsynaptic cell that averaged ∼34 pA. The average size of EPSCs varied in amplitude over a 20-fold range across different pairs. Both paired-pulse facilitation and depression were observed in the synaptic current in response to two presynaptic action potentials delivered 50 ms apart, but the average usually was dominated by depression. In addition, the amplitude of the second EPSC depended on the amplitude of the first EPSC, indicating competition between successive events for a common resource that is not restored within the 50-ms interpulse interval. Variation in the synaptic strength among pairs could arise from a variety of sources. Our data from anatomic reconstruction, 1/CV2 analysis, paired-pulse analysis, and manipulations of calcium/magnesium ratio suggest that differences in quantal size and release probability do not appear to vary sufficiently to fully account for the observed differences in amplitude. Thus it seems most likely that the variability in EPSC amplitude between pairs arises primarily from differences in the number of functional synapses. Injections of the calcium chelator bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid into the presynaptic neuron resulted in a rapid and nearly complete block of transmission, whereas injection of the slower-acting chelator EGTA resulted in a variable and partial block. In addition to demonstrating the feasibility of manipulating the intracellular presynaptic environment by injection into the presynaptic soma, these data, and the EGTA results in particular may suggest variability in the linkage between calcium entry sites an release sites in these synapses.
APA, Harvard, Vancouver, ISO, and other styles
15

Hernández-Pineda, R., A. Chow, Y. Amarillo, H. Moreno, M. Saganich, E. Vega-Saenz de Miera, A. Hernández-Cruz, and B. Rudy. "Kv3.1–Kv3.2 Channels Underlie a High-Voltage–Activating Component of the Delayed Rectifier K+ Current in Projecting Neurons From the Globus Pallidus." Journal of Neurophysiology 82, no. 3 (September 1, 1999): 1512–28. http://dx.doi.org/10.1152/jn.1999.82.3.1512.

Full text
Abstract:
The globus pallidus plays central roles in the basal ganglia circuitry involved in movement control as well as in cognitive and emotional functions. There is therefore great interest in the anatomic and electrophysiological characterization of this nucleus. Most pallidal neurons are GABAergic projecting cells, a large fraction of which express the calcium binding protein parvalbumin (PV). Here we show that PV-containing pallidal neurons coexpress Kv3.1 and Kv3.2 K+ channel proteins and that both Kv3.1 and Kv3.2 antibodies coprecipitate both channel proteins from pallidal membrane extracts solubilized with nondenaturing detergents, suggesting that the two channel subunits are forming heteromeric channels. Kv3.1 and Kv3.2 channels have several unusual electrophysiological properties when expressed in heterologous expression systems and are thought to play special roles in neuronal excitability including facilitating sustained high-frequency firing in fast-spiking neurons such as interneurons in the cortex and the hippocampus. Electrophysiological analysis of freshly dissociated pallidal neurons demonstrates that these cells have a current that is nearly identical to the currents expressed by Kv3.1 and Kv3.2 proteins in heterologous expression systems, including activation at very depolarized membrane potentials (more positive than −10 mV) and very fast deactivation rates. These results suggest that the electrophysiological properties of native channels containing Kv3.1 and Kv3.2 proteins in pallidal neurons are not significantly affected by factors such as associated subunits or postranslational modifications that result in channels having different properties in heterologous expression systems and native neurons. Most neurons in the globus pallidus have been reported to fire sustained trains of action potentials at high-frequency. Kv3.1–Kv3.2 voltage-gated K+channels may play a role in helping maintain sustained high-frequency repetitive firing as they probably do in other neurons.
APA, Harvard, Vancouver, ISO, and other styles
16

Elkin, Benjamin S., Ashok Ilankova, and Barclay Morrison. "Dynamic, Regional Mechanical Properties of the Porcine Brain: Indentation in the Coronal Plane." Journal of Biomechanical Engineering 133, no. 7 (July 1, 2011). http://dx.doi.org/10.1115/1.4004494.

Full text
Abstract:
Stress relaxation tests using a custom designed microindentation device were performed on ten anatomic regions of fresh porcine brain (postmortem time <3 h). Using linear viscoelastic theory, a Prony series representation was used to describe the shear relaxation modulus for each anatomic region tested. Prony series parameters fit to load data from indentations performed to ∼10% strain differed significantly by anatomic region. The gray and white matter of the cerebellum along with corpus callosum and brainstem were the softest regions measured. The cortex and hippocampal CA1/CA3 were found to be the stiffest. To examine the large strain behavior of the tissue, multistep indentations were performed in the corona radiata to strains of 10%, 20%, and 30%. Reduced relaxation functions were not significantly different for each step, suggesting that quasi-linear viscoelastic theory may be appropriate for representing the nonlinear behavior of this anatomic region of porcine brain tissue. These data, for the first time, describe the dynamic and short time scale behavior of multiple anatomic regions of the porcine brain which will be useful for understanding porcine brain injury biomechanics at a finer spatial resolution than previously possible.
APA, Harvard, Vancouver, ISO, and other styles
17

Elkin, Benjamin S., and Barclay Morrison. "Viscoelastic Properties of the P17 and Adult Rat Brain From Indentation in the Coronal Plane." Journal of Biomechanical Engineering 135, no. 11 (October 1, 2013). http://dx.doi.org/10.1115/1.4025386.

Full text
Abstract:
This technical brief serves as an update to our previous work characterizing the region-dependence of viscoelastic mechanical properties of the P17 and adult rat brain in the coronal plane (Elkin et al., 2011, “A Detailed Viscoelastic Characterization of the P17 and Adult Rat Brain,” J. Neurotrauma, 28, pp. 2235–2244.). Here, modifications to the microindentation device provided for the reliable measurement of load during the ramp portion of load relaxation microindentation tests. In addition, a correction factor for finite sample thickness was incorporated to more accurately assess the intrinsic mechanical properties of the tissue.The shear relaxation modulus was significantly dependent on the anatomic region and developmental age, with a general increase in stiffness with age and increased stiffness in the hippocampal and cortical regions compared with the white matter and cerebellar regions of the brain. The shear modulus ranged from ∼0.2 kPa to ∼2.6 kPa depending on region, age, and time scale. Best-fit Prony series parameters from least squares fitting to the indentation data from each region are reported, which describe the shear relaxation behavior for each anatomic region within each age group at both short (<10 ms) and long (∼20 s) time scales. These data will be useful for improving the biofidelity of finite element models of rat brain deformation at short time scales, such as models of traumatic brain injury.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography