Academic literature on the topic 'HnRNPK'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HnRNPK.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "HnRNPK"

1

Rothzerg, Emel, Wenyu Feng, Dezhi Song, et al. "Single-Cell Transcriptome Analysis Reveals Paraspeckles Expression in Osteosarcoma Tissues." Cancer Informatics 21 (January 2022): 117693512211401. http://dx.doi.org/10.1177/11769351221140101.

Full text
Abstract:
Nuclear paraspeckles are subnuclear bodies contracted by nuclear-enriched abundant transcript 1 (NEAT1) long non-coding RNA, localised in the interchromatin space of mammalian cell nuclei. Paraspeckles have been critically involved in tumour progression, metastasis and chemoresistance. To this date, there are limited findings to suggest that paraspeckles, NEAT1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) directly or indirectly play roles in osteosarcoma progression. Herein, we analysed NEAT1, paraspeckle proteins (SFPQ, PSPC1 and NONO) and hnRNP members (HNRNPK, HNRNPM, HNRNPR and HN
APA, Harvard, Vancouver, ISO, and other styles
2

Pettit Kneller, Elizabeth L., John H. Connor, and Douglas S. Lyles. "hnRNPs Relocalize to the Cytoplasm following Infection with Vesicular Stomatitis Virus." Journal of Virology 83, no. 2 (2008): 770–80. http://dx.doi.org/10.1128/jvi.01279-08.

Full text
Abstract:
ABSTRACT Vesicular stomatitis virus (VSV) matrix protein inhibits nuclear-cytoplasmic mRNA transport. The goal of this work is to determine whether VSV inhibits the nuclear-cytoplasmic transport of heterogeneous ribonucleoproteins (hnRNPs), which are thought to serve as mRNA export factors. Confocal microscopy experiments showed that hnRNPA1, hnRNPK, and hnRNPC1/C2, but not hnRNPB1 or lamin A/C, are relocalized to the cytoplasm during VSV infection. We determined whether protein import is inhibited by VSV by transfecting cells with a plasmid encoding enhanced green fluorescent protein (EGFP) t
APA, Harvard, Vancouver, ISO, and other styles
3

Cloe, Adam, Li Chen, Yuan Li, Hongtao Liu, and Jason X. Cheng. "Identification of Specific Hnrnps As Novel Therapeutic Targets and Responsive Indicators of KPT330 (selinexor) in Leukemia." Blood 128, no. 22 (2016): 1657. http://dx.doi.org/10.1182/blood.v128.22.1657.1657.

Full text
Abstract:
Abstract Background: Activenuclear-cytoplasmic shuttling of proteins and RNAs, such as heterogeneous ribonucleoproteins (hnRNPs), is essential for the normal function and survival of eukaryotic cells and tumorigenesis (Dreyfuss et al. 1993 Annu Rev Biochem 62, 289; Gorlich and Mattaj 1996 Science 271, 1513). Up-regulation of exportin 1 (XPO1)/chromosomal maintenance 1 (CRM1), a member of the karyopherin-β family of nuclear export receptor proteins, has been implicated in solid and hematologic malignancies (Kau Kau et al. 2004).Selinexor (KPT-330) has been shown to be able block in vitro and in
APA, Harvard, Vancouver, ISO, and other styles
4

Hornbaker, Marisa, Miguel Gallardo, Xiaorui Zhang, et al. "2180." Journal of Clinical and Translational Science 1, S1 (2017): 58. http://dx.doi.org/10.1017/cts.2017.207.

Full text
Abstract:
OBJECTIVES/SPECIFIC AIMS: Acute myeloid leukemia (AML) is a devastating hematologic malignancy wherein <20% of patients will survive 5 years after diagnosis. In an effort to understand alterations that drive AML development and progression, The Cancer Genome Atlas detailed the most common recurrent mutations. One gene of interest identified here was HNRNPK, supporting our clinical observations that suggest altered expression levels of HNRNPK and its corresponding protein (hnRNP K) may impact AML. Here, we aim to elucidate the impact of hnRNP K overexpression in AML by utilizing AML cell lin
APA, Harvard, Vancouver, ISO, and other styles
5

Aguilar-Garrido, Pedro, Maria Velasco-Estevez, Miguel Ángel Navarro-Aguadero, et al. "Hnrnpk Overexpression Drives Nucleolar Aberrancies Causing Ribosomopathies." Blood 142, Supplement 1 (2023): 5659. http://dx.doi.org/10.1182/blood-2023-178022.

Full text
Abstract:
Background: Protein biogenesis is a complex process involving nucleoli and ribosomes. Alterations in any step could lead to alterations in ribosome functionality and protein synthesis. Hnrnpk is an RNA-binding protein (RBP) involve in these processes, finding that an overexpression (OE) produces nucleus and nucleolar stress (NS), decreases transcription, and drives an imbalance in ribosome biogenesis, causing a reduced translation. Aims: To elucidate how hnRNP K dysregulation affects the hematopoietic stem cell (HSCs) biology. Methods: To study the impact of Hnrnpk OE in vivo, we developed an
APA, Harvard, Vancouver, ISO, and other styles
6

Hornbaker, Marisa J., Miguel Gallardo, Xiaorui Zhang, et al. "hnRNP K Overexpression Drives AML Progression By Altering Pathways Critical for Myeloid Proliferation and Differentiation." Blood 128, no. 22 (2016): 744. http://dx.doi.org/10.1182/blood.v128.22.744.744.

Full text
Abstract:
Abstract Acute myeloid leukemia (AML) is a disease largely defined by recurrent genetic and chromosomal abnormalities. As such, The Cancer Genome Atlas' recent detailed examination of the most common genetic abnormalities that drive AML uncovered relatively few novel alterations. However, within this list of recurrently mutated genes was heterogeneous nuclear ribonucleoprotein K (HNRNPK). While previously unknown to impact AML, we recently identified HNRNPK as a haploinsufficient tumor suppressor at the 9q21.32 locus. In contrast to its tumor suppressive roles, hnRNP K is most customarily over
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Haixia, Jiahua Guo, Wei Wu, et al. "Deletion of Hnrnpk Gene Causes Infertility in Male Mice by Disrupting Spermatogenesis." Cells 11, no. 8 (2022): 1277. http://dx.doi.org/10.3390/cells11081277.

Full text
Abstract:
HnRNPK is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been firmly implicated in transcriptional and post-transcriptional regulation. However, the molecular mechanisms by which hnRNPK orchestrates transcriptional or post-transcriptional regulation are not well understood due to early embryonic lethality in homozygous knockout mice, especially in a tissue-specific context. Strikingly, in this study, we demonstrated that hnRNPK is strongly expressed in the mouse testis and mainly localizes to the nucleus in spermatogonia, spermatocytes, and round spermatids, suggesting an important
APA, Harvard, Vancouver, ISO, and other styles
8

Post, Sean M., Kerstin Rhan, Shelley Herbrich та ін. "A Potential Link between hnRNP K and Cebpα: Implications for Ribosomal Dysfunction in Acute Myeloid Leukemia (AML)". Blood 142, Supplement 1 (2023): 4119. http://dx.doi.org/10.1182/blood-2023-190737.

Full text
Abstract:
Deletion of the long arm of chromosome 9, del(9q), is a recurrent genetic abnormality involving the haploinsufficient loss of the RNA binding protein hnRNPK and is often associated with poor treatment responses in AML. In addition to reduced hnRNP K expression, other critical proteins, not localized to this locus, are also aberrantly expressed in del9q AML. One protein of critical interest is CEBPα, a well-established myeloid differentiation transcription factor. Recently, CEBPα was discovered to have a novel role in ribosomal RNA (rRNA) synthesis. However, as opposed to CEBPα, hnRNP K's role
APA, Harvard, Vancouver, ISO, and other styles
9

Le, Quang D., Amanda Lewis, Alice Dix-Matthews, et al. "Structural Characteristics and Properties of the RNA-Binding Protein hnRNPK at Multiple Physical States." International Journal of Molecular Sciences 26, no. 3 (2025): 1356. https://doi.org/10.3390/ijms26031356.

Full text
Abstract:
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA-binding protein containing low-complexity domains (LCDs), which are known to regulate protein behavior under stress conditions. This study demonstrates the ability to control hnRNPK’s transitions into four distinct material states—monomer, soluble aggregate, liquid droplet, and fibrillar hydrogel—by modulating environmental factors such as temperature and protein concentration. Importantly, the phase-separated and hydrogel states are newly identified for eGFP-hnRNPK, marking a significant advancement in understanding its material pro
APA, Harvard, Vancouver, ISO, and other styles
10

Rahn, Kerstin, Isabel Naarmann-de Vries, Yvonne Sackmann, et al. "Role of hnRNP K and Interacting mRNAs in Pathogenesis of AML with 9q Deletion." Blood 132, Supplement 1 (2018): 1531. http://dx.doi.org/10.1182/blood-2018-99-114699.

Full text
Abstract:
Abstract Introduction: Acute myeloid leukemia (AML) is characterized by heterogeneous cytogenetic and molecular aberrations. Deletions on the long arm of chromosome 9 (del(9q)) are observed in 2% of AML patients. In about 24% of the cases, del(9q) is observed as sole karyotypic abnormality, while in the remaining 76%, it is associated with a t(8;21) translocation or other aberrations. Among all del(9q) AML cases, 36%-50% exhibit an additional t(8;21), whereas 7%-14% of AML cases with t(8;21) show del(9q) as an additional aberration. A commonly deleted region (CDR) of del(9q) was defined and fu
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "HnRNPK"

1

Labrecque, Benoît. "Identification des résidus contribuant à l'interaction hnRNP A1- hnRNP A1." Mémoire, Université de Sherbrooke, 2003. http://savoirs.usherbrooke.ca/handle/11143/3336.

Full text
Abstract:
HnRNP A1 est une protéine impliquée dans la sélection des sites 5 ' d'épissage in vitro et in vivo . Il est connu que son domaine riche en glycines est important pour médier son activité dans l'épissage alternatif. Le modèle"looping-out" a été proposé comme mécanisme d'action de A1; lorsque A1 lie des sites de haute affinité localisés dans la région intronique de part et d'autre d'un exon alternatif, l'exclusion de celui-ci est favorisé par une interaction A1-A1 impliquant le domaine riche en glycines. Les régions et les acides aminés impliqués dans l'interaction A1-A1 restent méconnus. Une mu
APA, Harvard, Vancouver, ISO, and other styles
2

Fisette, Jean-François. "Le contrôle de l'épissage alternatif par les protéines hnRNP H et hnRNP A1." Thèse, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/4275.

Full text
Abstract:
Les protéines hnRNP A1 sont impliquées dans l'épissage alternatif. Un mode d'action proposé implique la formation d'homodimères entre molécules hnRNP A1 causant un réarrangement dans la structure de l'ARN pré-messager. Cette modulation de l'ARN permettrait le rapprochement de sites d'épissage 5' et 3' d'exons situés de par et d'autres d'un exon alternatif. Le domaine riche en résidus glycines est responsable, en grande partie, de l'interaction entre les deux protéines hnRNP A1. Comme la protéine hnRNP H contient aussi un domaine riche en résidus glycines, nous avons postulé que cette dernière
APA, Harvard, Vancouver, ISO, and other styles
3

Moran-Jones, Kim. "hnRNPs A2 and A3 : nucleic acid interactions /." St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17983.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barral, Paola. "Characterization of a novel hnRNP : E1B-AP5." Thesis, University of Birmingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Le, Bras Morgane. "Rôle des protéines de liaison à l'ARN hnRNP H et hnRNP F dans les régulations traductionnelles dans les glioblastomes." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30277.

Full text
Abstract:
Le glioblastome multiforme (GBM) est une tumeur cérébrale extrêmement agressive associée à un mauvais pronostic. C'est pourquoi, il apparaît nécessaire d'identifier les mécanismes moléculaires participant au développement des GBM ainsi qu'à leurs résistances aux traitements afin de développer de nouvelles approches thérapeutiques. Récemment, il a été montré que les régulations traductionnelles jouent un rôle fondamental dans les propriétés agressives du GBM. Les protéines de liaison à l'ARN (RBP) sont des acteurs majeurs de ces régulations dont l'expression/activité est altérée dans les GBM. L
APA, Harvard, Vancouver, ISO, and other styles
6

Santerre, Maryline. "Étude de l'action sur l'épissage de protéines nucléaires se liant à la région de l'ARN du virus VIH-1 contenant le site d'épissage A7 et role de ces protéines sur d'autres sites accepteurs d'épissage de VIH-1." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10115/document.

Full text
Abstract:
L'épissage est une étape clef de la multiplication du VIH-1. Par utilisation de 4 sites donneurs et 8 sites accepteurs d'épissage, plus de 40 ARNm différents sont produits. Une approche protéomique nous a permis d'identifier de nouvelles protéines interagissant avec la région de l'ARN viral contenant le site A7. Nous avons démontré l'interaction directe avec l'ARN viral de 5 des protéines identifiées (nucléoline, hnRNP A1/B, hnRNP H et hnRNP K). Nous avons montré que hnRNP K a plusieurs sites de fixation dans la région du site A7 et que hnRNP A1et hnRNP K se lient de façon coopérative. Nous av
APA, Harvard, Vancouver, ISO, and other styles
7

Paradis, Caroline. "Rôles de SRp30c et hnRNP I/PTB dans le contrôle de l'épissage alternatif du pré-ARN messager de hnRNP A1." Mémoire, Université de Sherbrooke, 2007. http://savoirs.usherbrooke.ca/handle/11143/3857.

Full text
Abstract:
L'épissage alternatif des pré-ARN messagers est un mécanisme qui permet de générer une très grande diversité protéique chez les eucaryotes supérieurs. La sélection des sites d'épissage permet ainsi de produire certains isoformes protéiques plutôt que d'autres dans des conditions précises. Cette modulation implique généralement la participation d'une multitude de facteurs aux propriétés parfois synergiques et/ou antagonistes. Dans le cas du pré-ARN messager hnRNP A1, au moins trois éléments distincts renforcent l'exclusion de l'exon 7B. Par contre, l'élément intronique conservé de 38 nt (CE9) s
APA, Harvard, Vancouver, ISO, and other styles
8

Christian, Kyle. "The role of hnRNP A1 and hnRNP C1/C2 in the regulation of the stress responsive genes Cyp2a5/2A6 and p53." Doctoral thesis, Uppsala University, Department of Pharmaceutical Biosciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8722.

Full text
Abstract:
<p>The family of proteins known as heterogeneous nuclear ribonucleoproteins (hnRNPs) is large and diverse. Often, one and the same hnRNP will perform multiple cellular functions, leading to their description as “multifunctional proteins”. The two hnRNPs known as hnRNP A1 and hnRNP C1/C2 are multifunctional proteins found to affect the transcription, splicing, stability, and translation of specific genes’ mRNA. They are implicated in carcinogenesis, apoptosis, and DNA damage response mechanisms.</p><p>The aims of this thesis were to study the hnRNP A1 and hnRNP C1/C2 dependent regulation of two
APA, Harvard, Vancouver, ISO, and other styles
9

Peebles, Katherine Anne. "HnRNP A2/B1 expression in neoplastic mouse lung cells /." Connect to full text via ProQuest. IP filtered, 2005.

Find full text
Abstract:
Thesis (Ph.D. in Pharmaceutical Sciences) -- University of Colorado at Denver and Health Sciences Center, 2005.<br>Typescript. Includes bibliographical references (leaves 153-171). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
APA, Harvard, Vancouver, ISO, and other styles
10

Lodge, Anthony Paul. "Identification of a novel protein related to HnRNP-U." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "HnRNPK"

1

Melchers, Klaus. RNA-Metabolismus in lektinaktivierten Rinderlymphozyten: Vergleichende Untersuchungen zur Organisation, Struktur und Expression hnRNP-Core-Protein A1-spezifischer Gene. [s.n.], 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dugger, Sarah Anne. Evaluation of a precision medicine approach for hnRNP U-related developmental epileptic encephalopathy using a mouse model of disease. [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jensen, Danielle Kristen. Degradation of multiple hnRNPs during apoptosis. 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leser, George P. The immunological analysis of the major proteins associated with hnRNP. 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zipperle, Jacqueline. Die Proteine pp100 und pp120 als Substrate von Proteinkinasen der Zelloberfläche: Homologe der Kernproteine Nukleolin und hnRNP U. 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "HnRNPK"

1

Iwamoto, Ryo, Eisuke Mekada, Thomas G. Hofmann, et al. "hnRNP D." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berson, Amit, and Hermona Soreq. "HNRNPA1." In Encyclopedia of Signaling Molecules. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berson, Amit, and Hermona Soreq. "HNRNPA1." In Encyclopedia of Signaling Molecules. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101642-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Defren, Jennifer, and Gary Brewer. "hnRNP D (AUF1)." In Encyclopedia of Signaling Molecules. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iwamoto, Ryo, Eisuke Mekada, Thomas G. Hofmann, et al. "hnRNP D (AUF1)." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martinez-Contreras, Rebeca, Philippe Cloutier, Lulzim Shkreta, Jean-François Fisette, Timothée Revil, and Benoit Chabot. "hnRNP Proteins and Splicing Control." In Advances in Experimental Medicine and Biology. Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-77374-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jung, Frank, Constantin E. Sekeris, and Johannes Schenkel. "Isolation and Immunochemical Characterization of hnRNP Particles." In RNP Particles, Splicing and Autoimmune Diseases. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80356-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xuming, Christopher Lyle, Yicheng Wang, and Lin Zeng. "Role of hnRNP Al in Coronavirus RNA Synthesis." In Advances in Experimental Medicine and Biology. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1325-4_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michlewski, Gracjan, Sonia Guil, and Javier F. Cáceres. "Stimulation of pri-miR-18a Processing by hnRNP A1." In Advances in Experimental Medicine and Biology. Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7823-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

da Silva, Vinicius Barreto, Flavia Amoroso Matos e Silva, Cristiana Bernadelli Garcia, Andreia Machado Leopoldino, Carlos Henrique Tomich de Paula da Silva, and Carlton Anthony Taft. "Anticancer Lead Compounds that Prevent DNA Binding to hnRNP K." In Functional Properties of Advanced Engineering Materials and Biomolecules. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62226-8_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "HnRNPK"

1

Patel, Nirav M., Jie Xiang, Carmen Warren, Nurali Avliyakulov, Michael Haykinson, and Ralf Landgraf. "Abstract 1210: Activation of heterogeneous nuclear ribonucleoprotein K (HNRNPK) by ERBB2/ERBB3." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-1210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, L., C. Xia, W. Zhao, and G. Yu. "Lncrna Norad Promotes Pulmonary Fibrosis by Interacting With HNRNPK to Regulate ITGBL1." In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a2590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Jen-Hao. "Abstract 5130: Functional role of the crosstalk between arginine methylation and phosphorylation of hnRNPK during DNA damage." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Jason X., Li Cheng, Adam Cloe, et al. "Abstract 4470: RNA m5C methyltransferases and hnRNPK mediate disease-associated chromatin structure and drug resistance in leukemia." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Tsung-Ming, Ming-Chih Lai, Yi-Han Li, Shaw-Jenq Tsai, and H. Sunny Sun. "Abstract LB-205: hnRNPM-IRES-mediated translation promotes colon cancer tumorigenesis." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-lb-205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xiaofei, Jingya Wang, Pei Wang, et al. "HNF4A-AS1 Alleviates Ritonavir-induced Liver Injury via HNRNPC-mediated HNF4A Degradation." In ASPET 2023 Annual Meeting Abstracts. American Society for Pharmacology and Experimental Therapeutics, 2023. http://dx.doi.org/10.1124/jpet.122.187640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fei, Teng, Yiwen Chen, Myles Brown, and X. Shirley Liu. "Abstract IA11: Dependency of prostate cancer on HNRNPL and its associated RNAs." In Abstracts: AACR Special Conference on Noncoding RNAs and Cancer: Mechanisms to Medicines; December 4-7, 2015; Boston, MA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.nonrna15-ia11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tauler, Jordi, Jessica Siegler, Xiaoguang Sun, Liliana Moreno-Vinasco, and Joe GN Garcia. "Abstract 352: hnRNP A2/B1 regulates S1PR3 expression in lung cancer." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parekh, Palak R., Elizabeth Chang, Qingyuan Yang, and France Carrier. "Abstract 5081: hnRNP A18: an emerging novel target for cancer therapy." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-5081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Jianguo, and Yin-Yuan Mo. "Abstract 1827: HnRNP I interacts with lncRNA UCA1 and regulates its stability." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!