Academic literature on the topic 'Hodgkin-Huxley model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hodgkin-Huxley model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hodgkin-Huxley model"
He, Ji-Huan. "A modified Hodgkin–Huxley model." Chaos, Solitons & Fractals 29, no. 2 (July 2006): 303–6. http://dx.doi.org/10.1016/j.chaos.2005.08.144.
Full textGuckenheimer, John, and Ricardo A. Oliva. "Chaos in the Hodgkin--Huxley Model." SIAM Journal on Applied Dynamical Systems 1, no. 1 (January 2002): 105–14. http://dx.doi.org/10.1137/s1111111101394040.
Full textMcCormick, David A., Yousheng Shu, and Yuguo Yu. "Hodgkin and Huxley model — still standing?" Nature 445, no. 7123 (January 2007): E1—E2. http://dx.doi.org/10.1038/nature05523.
Full textCano, Gaspar, and Rui Dilão. "Intermittency in the Hodgkin-Huxley model." Journal of Computational Neuroscience 43, no. 2 (June 14, 2017): 115–25. http://dx.doi.org/10.1007/s10827-017-0653-9.
Full textWang, Lin, Ying Jie Wang, Xiao Yu Chen, and Xiao Qiang Liang. "Soliton Solutions and Applications on Neuronal Hodgkin-Huxley Model." Applied Mechanics and Materials 411-414 (September 2013): 3265–68. http://dx.doi.org/10.4028/www.scientific.net/amm.411-414.3265.
Full textBazsó, Fülöp, László Zalányi, and Gábor Csárdi. "Channel noise in Hodgkin–Huxley model neurons." Physics Letters A 311, no. 1 (May 2003): 13–20. http://dx.doi.org/10.1016/s0375-9601(03)00454-7.
Full textCoutin, Laure, Jean-Marc Guglielmi, and Nicolas Marie. "On a fractional stochastic Hodgkin–Huxley model." International Journal of Biomathematics 11, no. 05 (July 2018): 1850061. http://dx.doi.org/10.1142/s1793524518500614.
Full textShama, Farzin, Saeed Haghiri, and Mohammad Amin Imani. "FPGA Realization of Hodgkin-Huxley Neuronal Model." IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, no. 5 (May 2020): 1059–68. http://dx.doi.org/10.1109/tnsre.2020.2980475.
Full textNaundorf, Björn, Fred Wolf, and Maxim Volgushev. "Hodgkin and Huxley model — still standing? (Reply)." Nature 445, no. 7123 (January 2007): E2—E3. http://dx.doi.org/10.1038/nature05534.
Full textShorten, P. "A Hodgkin–Huxley Model Exhibiting Bursting Oscillations." Bulletin of Mathematical Biology 62, no. 4 (July 2000): 695–715. http://dx.doi.org/10.1006/bulm.2000.0172.
Full textDissertations / Theses on the topic "Hodgkin-Huxley model"
Pu, Shusen. "Noise Decomposition for Stochastic Hodgkin-Huxley Models." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1605789507246466.
Full textThompson, Ian M. "Artificial neural networks in medicine : theory and application in biomedical systems." Thesis, University of Newcastle Upon Tyne, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262994.
Full textDu, Toit Francois. "Control analysis of the action potential and its propagation in the Hodgkin-Huxley model." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5294.
Full textENGLISH ABSTRACT: The Hodgkin-Huxley model, created in 1952, was one of the first models in computational neuroscience and remains the best studied neuronal model to date. Although many other models have a more detailed system description than the Hodgkin-Huxley model, it nonetheless gives an accurate account of various high-level neuronal behaviours. The fields of computational neuroscience and Systems Biology have developed as separate disciplines for a long time and only fairly recently has the neurosciences started to incorporate methods from Systems Biology. Metabolic Control Analysis (MCA), a Systems Biology tool, has not been used in the neurosciences. This study aims to further bring these two fields together, by testing the feasibility of an MCA approach to analyse the Hodgkin-Huxley model. In MCA it is not the parameters of the system that are perturbed, as in the more traditional sensitivity analysis, but the system processes, allowing the formulation of summation and connectivity theorems. In order to determine if MCA can be performed on the Hodgkin-Huxley model, we identified all the discernable model processes of the neuronal system. We performed MCA and quantified the control of the model processes on various high-level time invariant system observables, e.g. the action potential (AP) peak, firing threshold, propagation speed and firing frequency. From this analysis we identified patterns in process control, e.g. the processes that would cause an increase in sodium current, would also cause the AP threshold to lower (decrease its negative value) and the AP peak, propagation speed and firing frequency to increase. Using experimental inhibitor titrations from literature we calculated the control of the sodium channel on AP characteristics and compared it with control coefficients derived from our model simulation. Additionally, we performed MCA on the model’s time-dependent state variables during an AP. This revealed an intricate linking of the system variables via the membrane potential. We developed a method to quantify the contribution of the individual feedback loops in the system. We could thus calculate the percentage contribution of the sodium, potassium and leak currents leading to the observed global change after a system perturbation. Lastly, we compared ion channel mutations to our model simulations and showed how MCA can be useful in identifying targets to counter the effect of these mutations. In this thesis we extended the framework of MCA to neuronal systems and have successfully applied the analysis framework to quantify the contribution of the system processes to the model behaviour.
AFRIKAANSE OPSOMMINMG: Die Hodgkin-Huxley-model, wat in 1952 ontwikkel is, was een van die eerste modelle in rekenaarmagtige neurowetenskap en is vandag steeds een van die bes-bestudeerde neuronmodelle. Hoewel daar vele modelle bestaan met ’n meer uitvoerige sisteembeskrywing as die Hodgkin-Huxley-model gee dié model nietemin ’n akkurate beskrywing van verskeie hoëvlak-sisteemverskynsels. Die twee velde van sisteembiologie en neurowetenskap het lank as onafhanklike dissiplines ontwikkel en slegs betreklik onlangs het die veld van neurowetenskap begin om metodes van sisteembiologie te benut. ’n Sisteembiologiemetode genaamd metaboliese kontrole-analise (MKA) is tot dusver nog nie in die neurowetenskap gebruik nie. Hierdie studie het gepoog om die twee velde nader aan mekaar te bring deurdat die toepasbaarheid van die MKA-raamwerk op die Hodgkin-Huxley-model getoets word. In MKA is dit nie die parameters van die sisteem wat geperturbeer word soos in die meer tradisionele sensitiwiteitsanalise nie, maar die sisteemprosesse. Dit laat die formulering van sommasie- en konnektiwiteitsteoremas toe. Om die toepasbaarheid van die MKA-raamwerk op die Hodgkin-Huxleymodel te toets, is al die onderskeibare modelprosesse van die neurale sisteem geïdentifiseer. Ons het MKA toegepas en die kontrole van die model-prosesse op verskeie hoëvlak, tydsonafhanklike waarneembare sisteemvlak-eienskappe, soos die aksiepotensiaal-kruin, aksiepotensiaal-drempel, voortplantingspoed en aksiepotensiaal-frekwensie, gekwantifiseer. Vanuit hierdie analise kon daar patrone in die proseskontrole geïdentifiseer word, naamlik dat die prosesse wat ’n toename in die natriumstroom veroorsaak, ook sal lei tot ’n afname in die aksiepotensiaal-drempel (die negatiewe waarde verminder) en tot ’n toename in die aksiepotensiaal-kruin, voortplantingspoed en aksiepotensiaalfrekwensie. Deur gebruik te maak van eksperimentele stremmer-titrasies vanuit die literatuur kon die kontrole van die natriumkanaal op die aksiepotensiaaleienskappe bereken en vergelyk word met die kontrole-koëffisiënte vanuit die modelsimulasie. Ons het ook MKA op die model se tydsafhanklike veranderlikes deur die verloop van die aksiepotensiaal uitgevoer. Die analise het getoon dat die sisteemveranderlikes ingewikkeld verbind is via die membraanpotensiaal. Ons het ’n metode ontwikkel om die bydrae van die individuele terugvoerlusse in die sisteem te kwantifiseer. Die persentasie-bydrae van die natrium-, kalium- en lekstrome wat tot die waarneembare globale verandering ná ’n sisteemperturbasie lei, kon dus bepaal word. Laastens het ons ioonkanaalmutasies met ons modelsimulasies vergelyk en getoon hoe MKA nuttig kan wees in die identifisering van teikens om die effek van hierdie mutasies teen te werk. In hierdie tesis het ons die raamwerk van MKA uitgebrei na neurale sisteme en die analise-raamwerk suksesvol toegepas om die bydrae van die sisteemprosesse tot die modelgedrag te kwantifiseer.
Rameh, Raffael Bechara. "Aproximações dos modelos de Hodgkin-Huxley e FitzHugh-Nagumo usando equações diferenciais com atraso." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/8081.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-11-23T13:13:22Z (GMT) No. of bitstreams: 1 raffaelbechararameh.pdf: 1503042 bytes, checksum: 87e66fa77937ca9a85aac3231b27ac84 (MD5)
Made available in DSpace on 2018-11-23T13:13:22Z (GMT). No. of bitstreams: 1 raffaelbechararameh.pdf: 1503042 bytes, checksum: 87e66fa77937ca9a85aac3231b27ac84 (MD5) Previous issue date: 2018-08-31
Para representar diferentes fenômenos e sistemas modelos matemáticos são largamente utilizados. Muitos deles são fundamentados em sistemas de equações diferenciais ordinárias (EDOs), isto é, baseiam-se em conjuntos de igualdades que envolvem variáveis dependentes, suas derivadas de primeira ordem e a variável independente. Neste trabalho, estudamos a modelagem da geração do potencial de ação em células excitáveis, como os neurônios. Existem dois modelos tradicionais e pioneiros que se destacam nessa área: Hodgkin-Huxley e FitzHugh-Nagumo. O objetivo desta dissertação é avaliar a possibilidade de modelar a geração do potencial de ação via uma única equação diferencial com atraso. Equações diferenciais com atraso são importantes por sua capacidade em reproduzir uma grande diversidade de fenômenos. Porém, seu uso na modelagem do potencial de ação de células excitáveis é ainda incipiente. Nesta dissertação, o método usado para alcançar este objetivo se baseou no desenvolvimento, inicialmente, de uma equação integro-diferencial que aproxima o sistema de EDOs. Em seguida, desenvolvemos uma aproximação para as integrais que usa termos tanto no instante atual quanto em instante anteriores, i.e., atrasados no tempo. Dessa forma, mostramos que é possível aproximar cada um dos sistemas de EDOS dos modelos de Hodgkin-Huxley e FitzHugh-Nagumo por uma única equação diferencial com atraso. Por fim, estes novos modelos são comparados com os originais, e são apontadas direções para a continuidade desta pesquisa.
To represent different phenomena and systems mathematical models are widely used. Many of them are based on systems of ordinary differential equations (ODEs), that is, they are based on sets of equalities involving dependent variables, their derivatives of first order and the independent variable. In this work, we study the modeling of action potential generation in excitable cells, such as neurons. There are two traditional and pioneering models that stand out in this area: Hodgkin-Huxley and FitzHugh-Nagumo. The objective of this dissertation is to evaluate the possibility of modeling the generation of the action potential via a single differential equation with delay. Differential equations with delay are important because of their capacity to reproduce a great diversity of phenomena. However, its use in modeling the action potential of excitable cells is still incipient. In this dissertation, the method used to achieve this goal was based on the development, initially, of an integral-differential equation that approximates the ODE system. Next, we develop an approximation for integrals that uses terms at both the current instant and the previous instant, i.e., time delayed. Thus, we show that it is possible to approximate each of the ODEs systems of the Hodgkin-Huxley and FitzHugh-Nagumo models by a single differential equation with delay. Finally, these new models are compared with the original ones, and directions are indicated for future works.
Borges, Rafael Ribaski. "PLASTICIDADE SINAPTICA EM REDES NEURONAIS." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2016. http://tede2.uepg.br/jspui/handle/prefix/860.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this thesis, it was investigated the influence of synaptic plasticity in the dynamics of neuronal networks. Specifically, we analyzed the effect on creation and suppression of synchronization spikes in networks composed of neurons with excitatory and inhibitory synapses. The spike timing-dependent plasticity (STDP) changes the strength of existing synapses in the neuronal network. To simulate the dynamics of each neuron, we considered the Hodgkin and Huxley model (HH), that is able to provide the main features of the temporal evolution of the membrane potential of each cell. The Kuramoto order parameter was utilized as synchronization diagnostic. First of all, we have studied the dynamics spikes in neuronal networks on a global and random topology with excitatory synapses with plasticity (STDP). It was observed that the STDP improves synchronization in a sufficiently dense neuronal networks. However, this effect is maximized by the insertion of an external perturbation of moderate intensity. Further, the system behavior was analyzed using the combination of inhibitory and excitatory synapses, both with spike timing-dependent plasticity. Our results indicated that the network becomes desynchronized when the intensity of inhibitory synapses is increased. Nevertheless, for small intensities of these synapses there was an increase in the values of the order parameter when the system with STDP was perturbed.
Nesta tese foi investigada a influência dos modelos de plasticidade sináptica na dinâmica de redes neuronais. Especificamente, foi analisado o efeito da plasticidade na criação e supressão da sincronização ao de disparos em redes compostas por neurônios com sinapses excitatórias e inibitórias. O modelo de plasticidade sináptica dependente do tempo entre disparos (do inglês: Spike-timing-dependent plasticity: STDP), modifica a intensidade das sinapses existentes na rede neuronal. Para simular a dinâmica de cada neurônio foi utilizado o modelo de Hodgkin e Huxley (HH), que ´e capaz de fornecer as principais características da evolução ao temporal do potencial de membrana de cada célula. Como diagnóstico de sincronização foi utilizado o parâmetro de ordem de Kuramoto. Primeiramente foi investigada a dinâmica de disparos em redes neuronais com topologia global e aleatória com sinapses excitatórias com plasticidade (STDP). Observou-se que a STDP contribui para a sincronização ao do sistema em redes neuronais suficientemente densas. No entanto, este efeito é maximizado com a inserção de uma perturbação o externa de intensidade moderada. Na sequência, foi analisado o comportamento do sistema com a combinação de sinapses excitatórias e inibitórias, ambas com STDP. Os resultados indicaram que a rede torna-se não sincronizada com o aumento da intensidade das sinapses inibitórias. Entretanto, para pequenas intensidades destas sinapses, observou-se um acréscimo nos valores do parâmetro de ordem quando o sistema com STDP foi perturbado.
Vähäsöyrinki, M. (Mikko). "Voltage-gated K+ channels in Drosophila photoreceptors:biophysical study of neural coding." Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514275993.
Full textRuzov, Vladimir. "Neuromodulation: Action Potential Modeling." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1217.
Full textTakalo, J. (Jouni). "Towards natural insect vision research." Doctoral thesis, University of Oulu, 2013. http://urn.fi/urn:isbn:9789526203249.
Full textDaouzli, Adel Mohamed. "Systèmes neuromorphiques : étude et implantation de fonctions d'apprentissage et de plasticité." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13806/document.
Full textIn this work, we have investigated the effect of input noise patterns on synaptic plasticity applied to a neural network. The study was realised using a neuromorphic hardware simulation system. We have implemented a neural conductance model based on Hodgkin and Huxley formalism, and a biophysical model for plasticity. The tasks performed during this thesis project included the configuration of the system, the development of software tools, the analysis tools to explore experimental results, and the development of the software modules for the remote access to the system via Internet using PyNN scripts (PyNN is a neural network description language commonly used in computational neurosciences)
Kondo, Shingo, and Masahiro Ohka. "Stochastic resonance aided tactile sensing." Cambridge University Press, 2009. http://hdl.handle.net/2237/14323.
Full textBooks on the topic "Hodgkin-Huxley model"
Melendy, Robert F. Bang-bang control development of permeability changes in a membrane model.: Permeability correction mechanisms inherent in the Hodgkin-Huxley model. Corvallis, OR: OSU Libraries, 1997.
Find full textBorkowski, Lech S. Nonlinear dynamics of Hodgkin-Huxley neurons. Poznań: Wydawn. Nauk. UAM, 2010.
Find full textCronin, Jane. Mathematical aspects of Hodgkin-Huxley neural theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.
Find full textWoodward, James. Explanation in Neurobiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199685509.003.0004.
Full textKoch, Christof. Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.001.0001.
Full textWendling, Fabrice, and Fernando H. Lopes da Silva. Dynamics of EEGs as Signals of Neuronal Populations. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0003.
Full textBook chapters on the topic "Hodgkin-Huxley model"
Beeman, David. "Hodgkin-Huxley Model." In Encyclopedia of Computational Neuroscience, 1–13. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_127-3.
Full textBeeman, David. "Hodgkin-Huxley Model." In Encyclopedia of Computational Neuroscience, 1389–99. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_127.
Full textNelson, Mark, and John Rinzel. "The Hodgkin-Huxley Model." In The Book of GENESIS, 29–51. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0189-9_4.
Full textNelson, Mark, and John Rinzel. "The Hodgkin—Huxley Model." In The Book of GENESIS, 29–49. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1634-6_4.
Full textPeterson, James K. "The Basic Hodgkin–Huxley Model." In Calculus for Cognitive Scientists, 401–84. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-880-9_12.
Full textvan Wijk van Brievingh, Rogier P., and Ignacio A. García Alves. "The Excitable Membrane: The Hodgkin-Huxley Model." In Biomedical Modeling and Simulation on a PC, 94–129. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9163-0_7.
Full textSakumura, Yuichi, Norio Konno, and Kazuyuki Aihara. "Markov Chain Model Approximating the Hodgkin-Huxley Neuron." In Artificial Neural Networks — ICANN 2001, 1153–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44668-0_161.
Full textSchneidman, Elad, Barry Freedman, and Idan Segev. "Spike Timing Reliability in a Stochastic Hodgkin-Huxley Model." In Computational Neuroscience, 261–66. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4831-7_44.
Full textSherief, Hany H., A. M. A. El-Sayed, S. H. Behiry, and W. E. Raslan. "Using Fractional Derivatives to Generalize the Hodgkin–Huxley Model." In Fractional Dynamics and Control, 275–82. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0457-6_23.
Full textTheunissen, Frédéric E., Frank H. Eeckman, and John P. Miller. "A Modified Hodgkin-Huxley Spiking Model with Continuous Spiking Output." In Computation and Neural Systems, 9–17. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3254-5_2.
Full textConference papers on the topic "Hodgkin-Huxley model"
Isler, Yalcin, Mehmet Kuntalp, and Gokhan Gonel. "Microcontroller based Hodgkin-Huxley model neuron simulation." In 2009 14th National Biomedical Engineering Meeting. IEEE, 2009. http://dx.doi.org/10.1109/biyomut.2009.5130348.
Full textLankarany, M., W. P. Zhu, M. N. S. Swamy, and Taro Toyoizumi. "Blind Deconvolution of Hodgkin-Huxley neuronal model." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610407.
Full text"FPGA Implementation of Hodgkin-Huxley Neuron Model." In International Conference on Neural Computation Theory and Applications. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0004152605220528.
Full textIonescu, Alexandra, Alina Orosanu, and Mihai Iordache. "Memristive model of the Hodgkin-Huxley axon." In 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE, 2021. http://dx.doi.org/10.1109/atee52255.2021.9425098.
Full textCsercsik, David, Gabor Szederkenyi, Katalin M. Hangos, and Imre Farkas. "Model synthesis identification a Hodgkin-Huxley-type neuron model." In 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7074874.
Full textRomanyshyn, Yuriy, Sergei Yelmanov, Hryhoriy Vaskiv, and Igor Grybyk. "Bifurcations Features of the Hodgkin-Huxley Neuron Model." In 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). IEEE, 2020. http://dx.doi.org/10.1109/tcset49122.2020.235564.
Full textZhang, Yue, Kuanquan Wang, Yongfeng Yuan, Dong Sui, Henggui Zhang, and Henggui Zhang. "Stability and bifurcation analysis of Hodgkin-Huxley model." In 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2013. http://dx.doi.org/10.1109/bibm.2013.6732717.
Full textDevi, M., Durga Choudhary, and Akhil Ranjan Garg. "Information Processing in Extended Hodgkin-Huxley Neuron Model." In 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE). IEEE, 2020. http://dx.doi.org/10.1109/icetce48199.2020.9091733.
Full textMai Lu, Jin-Long Wang, Jia Wen, and Xu-Wei Dong. "Implementation of Hodgkin-Huxley neuron model in FPGAs." In 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2016. http://dx.doi.org/10.1109/apemc.2016.7522959.
Full textLiao, Fang, Xuyang Lou, Baotong Cui, and Wei Wu. "State filtering and parameter estimation for Hodgkin-Huxley model." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727811.
Full textReports on the topic "Hodgkin-Huxley model"
Enderle, John D., and Edward J. Engelken. Simulation of Oculomotor Post-Inhibitory Rebound Burst Firing using a Hodgkin-Huxley Model of a Neuron. Fort Belvoir, VA: Defense Technical Information Center, February 1995. http://dx.doi.org/10.21236/ada293821.
Full text