Academic literature on the topic 'Hölder and Sobolev spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hölder and Sobolev spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hölder and Sobolev spaces"

1

Gaczkowski, Michał, and Przemysław Górka. "Variable Hajłasz-Sobolev spaces on compact metric spaces." Mathematica Slovaca 67, no. 1 (2017): 199–208. http://dx.doi.org/10.1515/ms-2016-0258.

Full text
Abstract:
Abstract We study variable exponent Sobolev spaces on compact metric spaces. Without the assumption of log-Hölder continuity of the exponent, the compact Sobolev-type embeddings theorems for these spaces are shown.
APA, Harvard, Vancouver, ISO, and other styles
2

Björn, Anders, Jana Björn, and Nageswari Shanmugalingam. "Sobolev Extensions of Hölder Continuous and Characteristic Functions on Metric Spaces." Canadian Journal of Mathematics 59, no. 6 (2007): 1135–53. http://dx.doi.org/10.4153/cjm-2007-049-7.

Full text
Abstract:
AbstractWe study when characteristic and Hölder continuous functions are traces of Sobolev functions on doubling metric measure spaces. We provide analytic and geometric conditions sufficient for extending characteristic and Hölder continuous functions into globally defined Sobolev functions.
APA, Harvard, Vancouver, ISO, and other styles
3

Lappalainen, Vesa, and Ari Lehtonen. "Embedding of Orlicz-Sobolev spaces in Hölder spaces." Annales Academiae Scientiarum Fennicae Series A I Mathematica 14 (1989): 41–46. http://dx.doi.org/10.5186/aasfm.1989.1417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BUCKLEY, STEPHEN M., and ALEXANDER STANOYEVITCH. "WEAK SLICE CONDITIONS AND HÖLDER IMBEDDINGS." Journal of the London Mathematical Society 64, no. 3 (2001): 690–706. http://dx.doi.org/10.1112/s0024610701002654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harjulehto, Petteri, Juha Kinnunen, and Katja Tuhkanen. "Hölder Quasicontinuity in Variable Exponent Sobolev Spaces." Journal of Inequalities and Applications 2007 (2007): 1–19. http://dx.doi.org/10.1155/2007/32324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heikkinen, Toni, Juha Lehrbäck, Juho Nuutinen, and Heli Tuominen. "Fractional Maximal Functions in Metric Measure Spaces." Analysis and Geometry in Metric Spaces 1 (May 28, 2013): 147–62. http://dx.doi.org/10.2478/agms-2013-0002.

Full text
Abstract:
Abstract We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.
APA, Harvard, Vancouver, ISO, and other styles
7

Baladi, Viviane, and Masato Tsujii. "Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms." Annales de l’institut Fourier 57, no. 1 (2007): 127–54. http://dx.doi.org/10.5802/aif.2253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Faria, Edson, Peter Hazard, and Charles Tresser. "Infinite entropy is generic in Hölder and Sobolev spaces." Comptes Rendus Mathematique 355, no. 11 (2017): 1185–89. http://dx.doi.org/10.1016/j.crma.2017.10.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bojarski, Bogdan, Piotr Hajłasz, and Paweł Strzelecki. "Sard's theorem for mappings in Hölder and Sobolev spaces." manuscripta mathematica 118, no. 3 (2005): 383–97. http://dx.doi.org/10.1007/s00229-005-0590-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Almeida, Alexandre, and Stefan Samko. "Embeddings of variable Hajłasz–Sobolev spaces into Hölder spaces of variable order." Journal of Mathematical Analysis and Applications 353, no. 2 (2009): 489–96. http://dx.doi.org/10.1016/j.jmaa.2008.12.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hölder and Sobolev spaces"

1

Karlsson, John. "Lebesgue points, Hölder continuity and Sobolev functions." Thesis, Linköping University, Linköping University, Linköping University, Department of Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16759.

Full text
Abstract:
<p>This paper deals with Lebesgue points and studies properties of the set of Lebesgue points for various classes of functions. We consider continuous functions, L<sup>1</sup> functions and Sobolev functions. In the case of uniformly continuous functions and Hölder continuous functions we develop a characterization in terms of Lebesgue points. For Sobolev functions we study the dimension of the set of non-Lebesgue points.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Salloum, Zaynab. "Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0017/document.

Full text
Abstract:
Cette thèse est consacrée à l’analyse mathématique de trois problèmes d’écoulements de fluides viscoélastiques de type Oldroyd. Tout d’abord, nous étudions des écoulements stationnaires faiblement compressibles dans un domaine borné avec des conditions au bord de type "rentrante-sortante". Nous étudions aussi le problème d’écoulements stationnaires faiblement compressibles dans un coin convexe. En utilisant une méthode de point fixe (premier et deuxième problèmes) et une décomposition de Helmoltz (deuxième problème), nous montrons des résultats d’existence et d’unicité des solutions. Nous étud
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Hoang Phuong. "Résultats de compacité et régularité dans un modèle de Ginzburg-Landau non-local issu du micromagnétisme. Lemme de Poincaré et régularité du domaine." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30315.

Full text
Abstract:
Dans cette thèse, nous étudions des problèmes aux limites impliquant le modèle micro-magnétique et les formes différentielles. Dans la première partie, nous considérons un modèle non-local de Ginzburg-Landau apparaissant en micromagnétisme avec une condition au bord de type Dirichlet. Le modèle typique implique une fonctionelle d'énergie définie pour des applications des valeurs dans la sphère S² et qui depend de plusieurs paramètres, qui représentent des quantités physiques. Une première question concerne la compacité des aimantations ayant les énergies de quelques parois de Néel de longueur
APA, Harvard, Vancouver, ISO, and other styles
4

Clemens, Jason. "Sobolev spaces." Kansas State University, 2014. http://hdl.handle.net/2097/18186.

Full text
Abstract:
Master of Science<br>Department of Mathematics<br>Marianne Korten<br>The goal for this paper is to present material from Gilbarg and Trudinger’s Elliptic Partial Differential Equations of Second Order chapter 7 on Sobolev spaces, in a manner easily accessible to a beginning graduate student. The properties of weak derivatives and there relationship to conventional concepts from calculus are the main focus, that is when do weak and strong derivatives coincide. To enable the progression into the primary focus, the process of mollification is presented and is widely used in estimations. Imbeddin
APA, Harvard, Vancouver, ISO, and other styles
5

Färm, David. "Upper gradients and Sobolev spaces on metric spaces." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816.

Full text
Abstract:
<p>The Laplace equation and the related p-Laplace equation are closely associated with Sobolev spaces. During the last 15 years people have been exploring the possibility of solving partial differential equations in general metric spaces by generalizing the concept of Sobolev spaces. One such generalization is the Newtonian space where one uses upper gradients to compensate for the lack of a derivative.</p><p>All papers on this topic are written for an audience of fellow researchers and people with graduate level mathematical skills. In this thesis we give an introduction to the Newtonian spac
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Young Ja. "Sobolev trace inequality and logarithmic Sobolev trace inequality." Digital version:, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p9992883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spector, Daniel. "Characterization of Sobolev and BV Spaces." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/78.

Full text
Abstract:
This work presents some new characterizations of Sobolev spaces and the space of functions of Bounded Variation. Additionally it gives new proofs of continuity and lower semicontinuity theorems due to Reshetnyak.
APA, Harvard, Vancouver, ISO, and other styles
8

Neves, Julio Severino. "Fractional Sobolev-type spaces and embeddings." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dines, Nicoleta, Gohar Harutjunjan, and Bert-Wolfgang Schulze. "The Zaremba problem in edge Sobolev spaces." Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2661/.

Full text
Abstract:
Mixed elliptic boundary value problems are characterised by conditions which have a jump along an interface of codimension 1 on the boundary. We study such problems in weighted edge Sobolev spaces and show the Fredholm property and the existence of parametrices under additional conditions of trace and potential type on the interface. Our methods from the calculus of boundary value problems on a manifold with edges will be illustrated by the Zaremba problem and other mixed problems for the Laplace operator.
APA, Harvard, Vancouver, ISO, and other styles
10

Gjestland, Fredrik Joachim. "Distributions, Schwartz Space and Fractional Sobolev Spaces." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23452.

Full text
Abstract:
This thesis derives the theory of distributions, starting with test functions as a basis. Distributions and their derivatives will be analysed and exemplified. Schwartz functions are introduced, and the Fourier transform of Schwartz functions is analysed, creating the basis for Tempered distributions on which we also analyse the Fourier transform. Weak derivatives and Sobolev spaces are defined, and from the Fourier transform we define Sobolev spaces of non-integer order. The theory presented is applied to an initial value problem with a derivative of order one in time and an arbitrary differe
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hölder and Sobolev spaces"

1

Porcu, Emilio. Random Fields And Applications To SpaceTime, Multivariate, Functional Geostatistics, And Spatial Extremes. Chapman and Hall/CRC, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sobolev spaces. Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maz’ja, Vladimir G. Sobolev Spaces. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-09922-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maz'ya, Vladimir. Sobolev Spaces. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15564-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kufner, Alois. Weighted Sobolev spaces. Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mazʹi︠a︡, V. G. Sobolev spaces in mathematics. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burenkov, Victor I. Sobolev Spaces on Domains. Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-663-11374-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burenkov, Victor I. Sobolev spaces on domains. B.G. Teubner, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hans, Triebel, ed. Distributions, Sobolev spaces, elliptic equations. European Mathematical Society, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grigorʹevich, Reshetni͡a︡k I͡U︡riĭ, ed. Quasiconformal mappings and Sobolev spaces. Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hölder and Sobolev spaces"

1

Turesson, Bengt Ove. "Sobolev spaces." In Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/bfb0103910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kress, Rainer. "Sobolev Spaces." In Linear Integral Equations. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9593-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Motreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Sobolev Spaces." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harjulehto, Petteri, and Peter Hästö. "Sobolev Spaces." In Lecture Notes in Mathematics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15100-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Atkinson, Kendall, and Weimin Han. "Sobolev Spaces." In Texts in Applied Mathematics. Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0458-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duistermaat, J. J., and J. A. C. Kolk. "Sobolev Spaces." In Distributions. Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brenner, Susanne C., and L. Ridgway Scott. "Sobolev Spaces." In Texts in Applied Mathematics. Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-3658-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitrea, Dorina. "Sobolev Spaces." In Universitext. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03296-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Georgiev, Svetlin G. "Sobolev Spaces." In Theory of Distributions. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19527-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Serov, Valery. "Sobolev Spaces." In Applied Mathematical Sciences. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65262-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hölder and Sobolev spaces"

1

Volpert, V., and A. Volpert. "Solvability of general elliptic problems in Hölder spaces." In Proceedings of the 4th European Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777201_0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fetzer, Matthias, and Carsten W. Scherer. "Stability and performance analysis on Sobolev spaces." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

He, Wenjie, and Mingjun Lai. "Bivariate box spline wavelets in Sobolev spaces." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Andrew F. Laine, Michael A. Unser, and Akram Aldroubi. SPIE, 1998. http://dx.doi.org/10.1117/12.328149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pick, Luboš. "Optimality of function spaces in Sobolev embeddings." In V International Course of Mathematical Analysis in Andalusia. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814699693_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Łenski, Włodzimierz, and Bogdan Szal. "On the approximation of functions by matrix means in the generalized Hölder metric." In Function Spaces VIII. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc79-0-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Szal, Bogdan. "On the approximation by Euler, Borel and Taylor means in enlarged Hölder classes." In Function Spaces VIII. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc79-0-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baust, Maximilian, Darko Zikic, and Nassir Navab. "Variational Level Set Segmentation in Riemannian Sobolev Spaces." In British Machine Vision Conference 2014. British Machine Vision Association, 2014. http://dx.doi.org/10.5244/c.28.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DEMIDENKO, GENNADII V. "WEIGHTED SOBOLEV SPACES AND QUASIELLIPTIC OPERATORS IN RN." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Epperlein, Jonathan P., and Bassam Bamieh. "Distributed control of spatially invariant systems over Sobolev spaces." In 2014 European Control Conference (ECC). IEEE, 2014. http://dx.doi.org/10.1109/ecc.2014.6862545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

YAKUBOVICH, SEMYON B. "SOBOLEV TYPE SPACES ASSOCIATED WITH THE KONTOROVICH-LEBEDEV TRANSFORM." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!