Books on the topic 'Hölder and Sobolev spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Hölder and Sobolev spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Porcu, Emilio. Random Fields And Applications To SpaceTime, Multivariate, Functional Geostatistics, And Spatial Extremes. Chapman and Hall/CRC, 2013.
Find full textMaz’ja, Vladimir G. Sobolev Spaces. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-09922-3.
Full textMaz'ya, Vladimir. Sobolev Spaces. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15564-2.
Full textBurenkov, Victor I. Sobolev Spaces on Domains. Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-663-11374-4.
Full textHans, Triebel, ed. Distributions, Sobolev spaces, elliptic equations. European Mathematical Society, 2007.
Find full textGrigorʹevich, Reshetni͡a︡k I͡U︡riĭ, ed. Quasiconformal mappings and Sobolev spaces. Kluwer Academic Publishers, 1990.
Find full textMaz’ya, Vladimir, ed. Sobolev Spaces In Mathematics I. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-85648-3.
Full textMaz'ya, Vladimir, ed. Sobolev Spaces in Mathematics II. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-85650-6.
Full textIsakov, Victor, ed. Sobolev Spaces in Mathematics III. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-85652-0.
Full textGol’dshtein, V. M., and Yu G. Reshetnyak. Quasiconformal Mappings and Sobolev Spaces. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1922-8.
Full textHebey, Emmanuel. Sobolev Spaces on Riemannian Manifolds. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092907.
Full textAnastassiou, George A. Inequalities based on Sobolev representations. Springer, 2011.
Find full textKutner, Alois, and Anna-Margarete Sändig. Some Applications of Weighted Sobolev Spaces. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-11385-0.
Full textauthor, Milman Mario, and Société mathématique de France, eds. Fractional Sobolev inequalities: Symmetrization, isoperimetry and interpolation. Société mathématique de France publié avec le concours du Centre National de la Recherche Scientifique, 2014.
Find full textReshetni︠a︡k, I︠U︡ G., and S. K. Vodopʹi︠a︡nov. Prostranstva Soboleva i smezhnye voprosy analiza. Izd-vo In-ta matematiki, 1996.
Find full textO, Shaposhnikova T., ed. Sobolev spaces: With applications to elliptic partial differential equations. 2nd ed. Springer Verlag, 2011.
Find full textMazʹi︠a︡, V. G. Prostranstva S.L. Soboleva. Izd-vo Leningradskogo universiteta, 1985.
Find full textMazʹi͡a, V. G. Prostranstva S.L. Soboleva. Izd-vo Leningradskogo universiteta, 1985.
Find full textPetteri, Harjulehto, Hästö Peter, Růžička Michael 1964-, and SpringerLink (Online service), eds. Lebesgue and Sobolev Spaces with Variable Exponents. Springer-Verlag Berlin Heidelberg, 2011.
Find full textDiening, Lars, Petteri Harjulehto, Peter Hästö, and Michael Ruzicka. Lebesgue and Sobolev Spaces with Variable Exponents. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8.
Full textTuresson, Bengt Ove. Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/bfb0103908.
Full textNonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Institute of Mathematical Sciences, 2000.
Find full textSobolev spaces of infinite order and differential equations. D. Reidel Pub. Co., 1986.
Find full textDistributions: Generalized functions with applications in Sobolev spaces. De Gruyter, 2012.
Find full textBrezis, Haim. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-70914-7.
Full textHebey, Emmanuel. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Institute of Mathematical Sciences, New York University, 1999.
Find full textLectures on elliptic and parabolic equations in Sobolev spaces. American Mathematical Society, 2008.
Find full textPokhozhaev, S. I., O. V. Besov та S. M. Nikolʹskiĭ. Funkt︠s︡ionalʹnye prostranstva, priblizhenii︠a︡, different︠s︡ialʹnye uravnenii︠a︡: Sbornik stateĭ : k 70-letii︠u︡ so dni︠a︡ rozhdeniii︠a︡ chlena-korrespondenta RAN Olega Vladimirovicha Besova. "Nauka," MAIK "Nauka/Interperiodika", 2003.
Find full textV, Poborchi Sergei, ed. Differentiable functions on bad domains. World Scientific, 1997.
Find full textZiemer, William P. Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Springer-Verlag, 1989.
Find full textDarko, Žubrinić, ed. Fundamentals of applied functional analysis: Distributions - Sobolev spaces - nonlinear elliptic equations. Longman, 1998.
Find full textMarcinkowska, Hanna. Dystrybucje i przestrzenie Sobolewa z zastosowaniami do równań różniczkowych. Wydawn. Uniwersytetu Wrocławskiego, 1990.
Find full textMarcinkowska, Hanna. Dystrybucje, przestrzenie Sobolewa, równania różniczkowe. Wydawn. Nauk. PWN, 1993.
Find full textBobkov, Serguei G. Some connections between isoperimetric and Sobolev-type inequalities. American Mathematical Society, 1997.
Find full text1954-, Sickel Winfried, ed. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter, 1996.
Find full textGiuseppe, Buttazzo, and Michaille Gérard, eds. Variational analysis in Sobolev and BV spaces: Applications to PDEs and optimization. Society for Industrial and Applied Mathematics, 2005.
Find full textAgranovich, Mikhail S. Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14648-5.
Full textSuleĭmanov, Seĭmur Ėlʹman ogly. Smeshannai︠a︡ zadacha dli︠a︡ volnovogo uravnenii︠a︡ i uravnenii︠a︡ Soboleva v t︠s︡ilindricheskoĭ oblasti. "Ėlm", 2009.
Find full textSviridyuk, G. A. Linear Sobolev type equations and degenerate semigroups of operators. VSP, 2003.
Find full textIntroduction to Sobolev spaces and finite element solution of elliptic boundary value problems. Academic Press, 1986.
Find full textNicola, Garofalo, and Nhieu Duy-Minh 1966-, eds. Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-caratheodory spaces. American Mathematical Society, 2006.
Find full textSobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture. CRC Press, 2011.
Find full text