Journal articles on the topic 'Hole transport material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hole transport material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Song, Ya Kun, Jing You, Shi Rong Wang, and Xiang Gao Li. "Application of Bässler′s Energy and Position Disorder Model and Hoping Model in Hole Transport Material." Applied Mechanics and Materials 161 (March 2012): 134–39. http://dx.doi.org/10.4028/www.scientific.net/amm.161.134.
Full textDiao, Xin-Feng, Yan-Lin Tang, Quan Xie, Tian-Yu Tang, Jia Lou, and Li Yuan. "Study on the Properties of Organic–Inorganic Hole Transport Materials in Perovskite Based on First-Principles." Journal of Nanoelectronics and Optoelectronics 14, no. 12 (2019): 1786–95. http://dx.doi.org/10.1166/jno.2019.2687.
Full textHu, Zhao, Weifei Fu, Lijia Yan, et al. "Effects of heteroatom substitution in spiro-bifluorene hole transport materials." Chemical Science 7, no. 8 (2016): 5007–12. http://dx.doi.org/10.1039/c6sc00973e.
Full textHuh, Dal Ho, Gyeong Woo Kim, Gyeong Heon Kim, Chandramouli Kulshreshtha, and Jang Hyuk Kwon. "High hole mobility hole transport material for organic light-emitting devices." Synthetic Metals 180 (September 2013): 79–84. http://dx.doi.org/10.1016/j.synthmet.2013.07.021.
Full textGao, Yong Hui, and Wen Long Jiang. "White Organic Light Emitting Devices Based on the New Hole Injection Material MeO-TAD." Advanced Materials Research 239-242 (May 2011): 3048–51. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.3048.
Full textEtgar, Lioz. "Hole-transport material-free perovskite-based solar cells." MRS Bulletin 40, no. 8 (2015): 674–80. http://dx.doi.org/10.1557/mrs.2015.174.
Full textEgan, R. J., V. W. L. Chin, and T. L. Tansley. "Hole Transport in the InSbInAs material system." Solid State Communications 93, no. 7 (1995): 553–56. http://dx.doi.org/10.1016/0038-1098(94)00838-4.
Full textLee, Donggu, Jaehoon Lim, Myeongjin Park, Chan-Mo Kang, and Hyunkoo Lee. "Device Characteristics of Inverted Red Colloidal Quantum-Dot Light-Emitting Diodes Depending on Hole Transport Layers." Science of Advanced Materials 13, no. 5 (2021): 917–21. http://dx.doi.org/10.1166/sam.2021.3979.
Full textKhalaph, Kawther A. "Lead-free Two-dimensional Perovskite Solar Cells Cs3Fe2Cl9 Using MgO Nanoparticulate Films as Hole Transport Material." NeuroQuantology 18, no. 2 (2020): 127–32. http://dx.doi.org/10.14704/nq.2020.18.2.nq20137.
Full textSong, Min-Kyu, Jang-Ho Yoon, Kwang-Hun Kim, et al. "Organic Electroluminescent Devices Using a Polymer Hole Transport Material." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 316, no. 1 (1998): 293–96. http://dx.doi.org/10.1080/10587259808044512.
Full textSan-Fabián, Emilio, Enrique Louis, María Díaz-García, Guillermo Chiappe, and José Vergés. "Transport and Optical Gaps in Amorphous Organic Molecular Materials." Molecules 24, no. 3 (2019): 609. http://dx.doi.org/10.3390/molecules24030609.
Full textHa, Hyein, Young Jae Shim, Da Hwan Lee, et al. "Highly Efficient Solution-Processed Organic Light-Emitting Diodes Containing a New Cross-linkable Hole Transport Material Blended with Commercial Hole Transport Materials." ACS Applied Materials & Interfaces 13, no. 18 (2021): 21954–63. http://dx.doi.org/10.1021/acsami.1c01835.
Full textKhatami, Mohammad Mahdi, Gautam Gaddemane, Maarten L. Van de Put, et al. "Electronic Transport Properties of Silicane Determined from First Principles." Materials 12, no. 18 (2019): 2935. http://dx.doi.org/10.3390/ma12182935.
Full textRamzan Parra, Mohammad, Padmini Pandey, Neha Singh, Hafsa Siddiqui, and Fozia Z. Haque. "Solid-State Polymer/ZnO Hybrid Dye Sensitized Solar Cell: A Review." Material Science Research India 9, no. 1 (2012): 69–80. http://dx.doi.org/10.13005/msri/090109.
Full textSafriani, L., W. P. Primawati, C. Mulyana, T. Susilawati, and A. Aprilia. "Fabrication of Semi-quasi Solid DSSC using Spiro Material as Hole Transport Material." IOP Conference Series: Materials Science and Engineering 196 (May 2017): 012014. http://dx.doi.org/10.1088/1757-899x/196/1/012014.
Full textLiu, Neng, Sijiong Mei, Dongwei Sun, et al. "Effects of Charge Transport Materials on Blue Fluorescent Organic Light-Emitting Diodes with a Host-Dopant System." Micromachines 10, no. 5 (2019): 344. http://dx.doi.org/10.3390/mi10050344.
Full textTan, S. X., J. Zhai, M. X. Wan, L. Jiang, and D. B. Zhu. "Polyaniline as Hole Transport Material to Prepare Solid Solar Cells." Synthetic Metals 137, no. 1-3 (2003): 1511–12. http://dx.doi.org/10.1016/s0379-6779(02)01207-9.
Full textMa, Shuang, Xianfu Zhang, Xuepeng Liu, et al. "Pyridine-triphenylamine hole transport material for inverted perovskite solar cells." Journal of Energy Chemistry 54 (March 2021): 395–402. http://dx.doi.org/10.1016/j.jechem.2020.06.002.
Full textKrysko, Ilya Dmitrievich, Alexandra Yakovlevna Freidzon та Alexander Alexandrovich Bagaturyants. "Hole hopping in dimers of N,N′ di(1-naphthyl)-N,N′-diphenyl-4,4′-diamine (α-NPD): a theoretical study". Physical Chemistry Chemical Physics 22, № 6 (2020): 3539–44. http://dx.doi.org/10.1039/c9cp06455a.
Full textKim, WooJin, Yuki Nishikawa, Thanh-Tuân Bui, et al. "Carrier transport study on triphenylamine-thienothiophene-based hole transport material by MIS-CELIV method." Japanese Journal of Applied Physics 59, SG (2020): SGGG01. http://dx.doi.org/10.7567/1347-4065/ab656b.
Full textTrifiletti, Vanira, Thibault Degousée, Norberto Manfredi, Oliver Fenwick, Silvia Colella, and Aurora Rizzo. "Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells." Metals 10, no. 1 (2019): 14. http://dx.doi.org/10.3390/met10010014.
Full textPashaei, Babak, Sebastiano Bellani, Hashem Shahroosvand, and Francesco Bonaccorso. "Molecularly engineered hole-transport material for low-cost perovskite solar cells." Chemical Science 11, no. 9 (2020): 2429–39. http://dx.doi.org/10.1039/c9sc05694g.
Full textHatib, Rustan, Sudjito Soeparman, Denny Widhiyanuriyawan, and Nurkholis Hamidi. "Performance of perovskite solar cell coated with graphene oxide as hole transport layer." Eastern-European Journal of Enterprise Technologies 1, no. 12 (109) (2021): 36–43. http://dx.doi.org/10.15587/1729-4061.2021.225420.
Full textChakrabarti, Supriya, Darragh Carolan, Bruno Alessi, Paul Maguire, Vladimir Svrcek, and Davide Mariotti. "Microplasma-synthesized ultra-small NiO nanocrystals, a ubiquitous hole transport material." Nanoscale Advances 1, no. 12 (2019): 4915–25. http://dx.doi.org/10.1039/c9na00299e.
Full textSeo, Jeong-A., Sang Kyu Jeon, Myoung Seon Gong, Jun Yeob Lee, Chang Ho Noh, and Sung Han Kim. "Long lifetime blue phosphorescent organic light-emitting diodes with an exciton blocking layer." Journal of Materials Chemistry C 3, no. 18 (2015): 4640–45. http://dx.doi.org/10.1039/c5tc00640f.
Full textShi, Dong, Xiang Qin, Yuan Li, et al. "Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering." Science Advances 2, no. 4 (2016): e1501491. http://dx.doi.org/10.1126/sciadv.1501491.
Full textZanotti, Gloria, Giuseppe Mattioli, Anna Maria Paoletti, et al. "A Solution-Processed Tetra-Alkoxylated Zinc Phthalocyanine as Hole Transporting Material for Emerging Photovoltaic Technologies." International Journal of Photoenergy 2018 (November 13, 2018): 1–9. http://dx.doi.org/10.1155/2018/2473152.
Full textTatsuo, Mori, and Iwama Yuki. "Polycrystallization of a Hole Transport Material on Indium-Tin-Oxide Substrates." Journal of Photopolymer Science and Technology 18, no. 1 (2005): 59–63. http://dx.doi.org/10.2494/photopolymer.18.59.
Full textMadhavan, Vinod E., Iwan Zimmermann, Ahmer A. B. Baloch, et al. "CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells." ACS Applied Energy Materials 3, no. 1 (2019): 114–21. http://dx.doi.org/10.1021/acsaem.9b01692.
Full textKusuma, J., and R. Geetha Balakrishna. "Ceramic grains: Highly promising hole transport material for solid state QDSSC." Solar Energy Materials and Solar Cells 209 (June 2020): 110445. http://dx.doi.org/10.1016/j.solmat.2020.110445.
Full textLim, Bogyu, Jin-Taek Hwang, Jin Young Kim, et al. "Synthesis of a New Cross-Linkable Perfluorocyclobutane-Based Hole-Transport Material." Organic Letters 8, no. 21 (2006): 4703–6. http://dx.doi.org/10.1021/ol061642f.
Full textBellmann, Erika, Ghassan E. Jabbour, Robert H. Grubbs, and Peyghambarian. "Hole Transport Polymers with Improved Interfacial Contact to the Anode Material." Chemistry of Materials 12, no. 5 (2000): 1349–53. http://dx.doi.org/10.1021/cm990689a.
Full textLiu, Xuepeng, Xiaoqiang Shi, Cheng Liu, et al. "A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells." Journal of Physical Chemistry C 122, no. 46 (2018): 26337–43. http://dx.doi.org/10.1021/acs.jpcc.8b08168.
Full textPolander, Lauren E., Paul Pahner, Martin Schwarze, Matthias Saalfrank, Christian Koerner, and Karl Leo. "Hole-transport material variation in fully vacuum deposited perovskite solar cells." APL Materials 2, no. 8 (2014): 081503. http://dx.doi.org/10.1063/1.4889843.
Full textHuckaba, Aron J., Saba Gharibzadeh, Maryline Ralaiarisoa, et al. "Low-Cost TiS2 as Hole-Transport Material for Perovskite Solar Cells." Small Methods 1, no. 10 (2017): 1700250. http://dx.doi.org/10.1002/smtd.201700250.
Full textMatsushima, Hidenobu, Shigeki Naka, Hiroyuki Okada, and Hiroyoshi Onnagawa. "Organic electrophosphorescent devices with mixed hole transport material as emission layer." Current Applied Physics 5, no. 4 (2005): 305–8. http://dx.doi.org/10.1016/j.cap.2003.11.091.
Full textWang, LiangLe, Md Shahiduzzaman, Shoko Fukaya, et al. "Low-cost molecular glass hole transport material for perovskite solar cells." Japanese Journal of Applied Physics 60, SB (2021): SBBF12. http://dx.doi.org/10.35848/1347-4065/abde28.
Full textKlein, Johannes R., Mirko Scholz, Kawon Oum, and Thomas Lenzer. "Quantifying ultrafast charge carrier injection from methylammonium lead iodide into the hole-transport material H101 and mesoporous TiO2 using Vis-NIR transient absorption." Physical Chemistry Chemical Physics 19, no. 27 (2017): 17952–59. http://dx.doi.org/10.1039/c7cp02459b.
Full textLim, Jeongmin, Seong Young Kong, and Yong Ju Yun. "Hole Transport Behaviour of Various Polymers and Their Application to Perovskite-Sensitized Solid-State Solar Cells." Journal of Nanomaterials 2018 (June 25, 2018): 1–6. http://dx.doi.org/10.1155/2018/7545914.
Full textLin, Mei-Fang, Wai-Kwok Wong, Kok-Wai Cheah, et al. "P-206: Improved OLEDs with Single Ambipolar Material for Hole-Transport and Electron-Transport Layers." SID Symposium Digest of Technical Papers 39, no. 1 (2008): 1981. http://dx.doi.org/10.1889/1.3069586.
Full textWu, Fei, Baohua Wang, Rui Wang, et al. "Investigation on a dopant-free hole transport material for perovskite solar cells." RSC Advances 6, no. 73 (2016): 69365–69. http://dx.doi.org/10.1039/c6ra07603c.
Full textSafriani, Lusi, Winna Prasita Primawati, Euis Siti Nurazizah, Cukup Mulyana, and Annisa Aprilia. "Pengaruh Penambahan Material Spiro-TAD dan Spiro-TPD Sebagai Hole Transport Material Pada Karakteristik DSSC." Jurnal Ilmu dan Inovasi Fisika 4, no. 1 (2020): 79–85. http://dx.doi.org/10.24198/jiif.v4i1.26349.
Full textOpoku, Henry, Yun Hoo Kim, Ji Hyeon Lee, et al. "A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics." Journal of Materials Chemistry A 9, no. 27 (2021): 15294–300. http://dx.doi.org/10.1039/d1ta03577k.
Full textYang, Gui-Xia, Hai-Lin Fan, Xiao-Di Niu, and Zong-Hao Huang. "A theoretical study of bipolar organic transport material: Disilanyl double-pillared bisanthracene (SiDPBA)." Canadian Journal of Chemistry 89, no. 10 (2011): 1257–63. http://dx.doi.org/10.1139/v11-085.
Full textMa, Shuai, Mingwei Shang, Liyan Yu, and Lifeng Dong. "Device optimization of CsSnI2.95F0.05-based all-solid-state dye-sensitized solar cells with non-linear charge-carrier-density dependent photovoltaic behaviors." Journal of Materials Chemistry A 3, no. 3 (2015): 1222–29. http://dx.doi.org/10.1039/c4ta04593a.
Full textJing, You, Shi Rong Wang, and Xiang Gao Li. "Theory Study of the Geometrical Isomerism Influence on Hole-Transport Material’s Residual Potential of Organic Photoconductive." Advanced Materials Research 79-82 (August 2009): 1197–200. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1197.
Full textLin, Siyuan, Bingchu Yang, Xincan Qiu, et al. "Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material." Organic Electronics 53 (February 2018): 235–41. http://dx.doi.org/10.1016/j.orgel.2017.12.002.
Full textLi, Yanan, Liang Zhou, Yunlong Jiang, Rongzhen Cui, Xuesen Zhao, and Hongjie Zhang. "High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter." Journal of Materials Chemistry C 5, no. 17 (2017): 4219–25. http://dx.doi.org/10.1039/c7tc00725f.
Full textEarmme, Taeshik. "Solution-Processed Efficient Blue Phosphorescent Organic Light-Emitting Diodes (PHOLEDs) Enabled by Hole-Transport Material Incorporated Single Emission Layer." Materials 14, no. 3 (2021): 554. http://dx.doi.org/10.3390/ma14030554.
Full textSong, Wook, Ha Lim Lee, and Jun Yeob Lee. "High triplet energy exciplex hosts for deep blue phosphorescent organic light-emitting diodes." Journal of Materials Chemistry C 5, no. 24 (2017): 5923–29. http://dx.doi.org/10.1039/c7tc01552f.
Full text