Academic literature on the topic 'Homography and homography decomposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homography and homography decomposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Homography and homography decomposition"
Wu, Chunfu, Guodong Li, Qingshun Tang, and Fengyu Zhou. "Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition." Journal of Control Science and Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/739894.
Full textZhan, Xinrui, Yueran Liu, Jianke Zhu, and Yang Li. "Homography Decomposition Networks for Planar Object Tracking." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (June 28, 2022): 3234–42. http://dx.doi.org/10.1609/aaai.v36i3.20232.
Full textZong, Xiao Ping, Yue Xia Li, Pei Guang Wang, and Wei Dong Liu. "Simulation Design of Visual Servo Based on Homography Matrix Decomposition." Applied Mechanics and Materials 241-244 (December 2012): 1855–58. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.1855.
Full textZhang, Lei, Zhengjun Zhai, Lang He, Pengcheng Wen, and Wensheng Niu. "Infrared-Inertial Navigation for Commercial Aircraft Precision Landing in Low Visibility and GPS-Denied Environments." Sensors 19, no. 2 (January 20, 2019): 408. http://dx.doi.org/10.3390/s19020408.
Full textChitrakaran, V. K., A. Behal, D. M. Dawson, and I. D. Walker. "Setpoint regulation of continuum robots using a fixed camera." Robotica 25, no. 5 (September 2007): 581–86. http://dx.doi.org/10.1017/s0263574707003475.
Full textTsironis, V., A. Tranou, A. Vythoulkas, A. Psalta, E. Petsa, and G. Karras. "AUTOMATIC RECTIFICATION OF BUILDING FAÇADES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W3 (February 23, 2017): 645–50. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w3-645-2017.
Full textFink, Geoff, Hui Xie, Alan F. Lynch, and Martin Jagersand. "Dynamic Visual Servoing for a Quadrotor Using a Virtual Camera." Unmanned Systems 05, no. 01 (January 2017): 1–17. http://dx.doi.org/10.1142/s2301385017500017.
Full textMichaelsen, E. "STITCHING LARGE MAPS FROM VIDEOS TAKEN BY A CAMERA MOVING CLOSE OVER A PLANE USING HOMOGRAPHY DECOMPOSITION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-3/W22 (April 26, 2013): 125–29. http://dx.doi.org/10.5194/isprsarchives-xxxviii-3-w22-125-2011.
Full textYan, Zhaocheng, Shuai Teng, Wenjun Luo, David Bassir, and Gongfa Chen. "Bridge Modal Parameter Identification from UAV Measurement Based on Empirical Mode Decomposition and Fourier Transform." Applied Sciences 12, no. 17 (August 30, 2022): 8689. http://dx.doi.org/10.3390/app12178689.
Full textGoh, J. N., S. K. Phang, and W. J. Chew. "Real-time and automatic map stitching through aerial images from UAV." Journal of Physics: Conference Series 2120, no. 1 (December 1, 2021): 012025. http://dx.doi.org/10.1088/1742-6596/2120/1/012025.
Full textDissertations / Theses on the topic "Homography and homography decomposition"
Manerikar, Ninad. "Fusion de capteurs visuels-inertiels et estimation d'état pour la navigation des véhicules autonomes." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4111.
Full textAccurate state estimation is a fundamental problem for the navigation of Autonomous vehicles. This is particularly important when the vehicle is navigating through cluttered environments or it has to navigate in close proximity to its physical surroundings in order to perform localization, obstacle avoidance, environmental mapping etc. Although several algorithms were proposed in the past for this problem of state estimtation, they were usually applied to a single sensor or a specific sensor suite. To this end, researchers in the computer vision and control community came up with a visual-inertial framework (Camera + Imu) that exploit the combined properties of this sensor suite to produce precise local estimates (position, orientation, velocity etc). Taking inspiration from this, my thesis focuses on developing nonlinear observers for State Estimation by exploiting the classical Riccati design framework with a particular emphasis on visual-inertial sensor fusion. In the context of this thesis, we use a suite of low-cost sensors consisting of a monocular camera and an IMU. Throughout the thesis, the assumption on the planarity of the visual target has been considered. In the present thesis, two research topics have been considered. Firstly, an extensive study for the existing techniques for homography estimation has been carried out after which a novel nonlinear observer on the SL(3) group has been proposed with application to optical flow estimation. The novelty lies in the linearization approach undertaken to linearize a nonlinear observer on SL(3), thus making it more simplistic and suitable for practical implementation. Then, another novel observer based on deterministic Ricatti observer has been proposed for the problem of partial attitude, linear velocity and depth estimation for planar targets. The proposed approach does not rely on the strong assumption that the IMU provides the measurements of the vehicle’s linear acceleration in the body-fixed frame. Again experimental validations have been carried out to show the performance of the observer. An extension to this observer has been further proposed to filter the noisy optical flow estimates obtained from the extraction of continuous homography. Secondly, two novel observers for tackling the classical problem of homography decomposition have been proposed. The key contribution here lies in the design of two deterministic Riccati observers for addressing the homography decomposition problem instead of solving it on a frame-by-frame basis like traditional algebraic approaches. The performance and robustness of the observers have been validated over simulations and practical experiments. All the observers proposed above are part of the Homography-Lab library that has been evaluated at the TRL 7 (Technology Readiness Level) and is protected by the French APP (Agency for the Protection of Programs) which serves as the main brick for various applications like velocity, optical flow estimation and visual homography based stabilization
DiMascio, Michelle Augustine. "Convolutional Neural Network Optimization for Homography Estimation." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1544214038882564.
Full textZeng, Rui. "Homography estimation: From geometry to deep learning." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134132/1/Rui_Zeng_Thesis.pdf.
Full textTurk, Matthew Robert. "A homography-based multiple-camera person-tracking algorithm /." Online version of thesis, 2008. http://hdl.handle.net/1850/7853.
Full textGraham, Athelia. "The Effects of Homography on Computer-generated High Frequency Word Lists." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2692.pdf.
Full textFristedt, Hampus. "Homography Estimation using Deep Learning for Registering All-22 Football Video Frames." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209583.
Full textHomografiuppskattning är ett förkrav för många problem inom datorseende, men många tekniker för att uppskatta homografier bygger på komplicerade processer för att extrahera särdrag mellan bilderna. Vi bygger på tidigare forskning inom direkt homografiuppskattning (alltså, utan att explicit extrahera särdrag) genom att implementera ett Convolutional Neural Network (CNN) kapabelt av att direkt uppskatta homografier. Arbetet tillämpas för att registrera bilder från video av amerikansk fotball till en referensvy av fotbollsplanen. Vår modell registrerar bildramer från ett testset till referensvyn med ett snittfel i bildens hörn ekvivalent med knappt 2 yards.
Ähdel, Victor. "On the effect of architecture on deep learning based features for homography estimation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233194.
Full textNyckelpunkts-detektion och deskriptor-skapande är det första steget av homografi och essentiell matris estimering, vilket i sin tur används inom Visuell Odometri och Visuell SLAM. Det här arbetet utforskar effekten (i form av snabbhet och exakthet) av användandet av olika djupinlärnings-arkitekturer för sådana nyckelpunkter. De hel-faltade nätverken – med huvuden för både detektorn och deskriptorn – tränas genom en existerande själv-handledd metod, där korrespondenser fås genom kända slumpmässigt valda homografier. En ny strategi för valet av negativa korrespondenser för deskriptorns träning presenteras, vilket möjliggör mer flexibilitet i designen av arkitektur. Den nya strategin visar sig vara väsentlig då den möjliggör nätverk som presterar bättre än den lärda baslinjen utan någon kostnad i inferenstid. Varieringen av modellstorleken leder till en kompromiss mellan snabbhet och exakthet, och medan alla modellerna presterar bättre än ORB i homografi-estimering, så är det endast de större modellerna som närmar sig SIFTs prestanda; där de presterar 1-7% sämre. Att träna längre och med ytterligare typer av data kanske ger tillräcklig förbättring för att prestera bättre än SIFT. Även fast de minsta modellerna är 3× snabbare och använder 50× färre parametrar än den lärda baslinjen, så kräver de fortfarande 3× så mycket tid som SIFT medan de presterar runt 10-30% sämre. Men det finns fortfarande utrymme för förbättring genom optimeringsmetoder som övergränsar ändringar av arkitekturen, som till exempel kvantisering, vilket skulle kunna göra metoden snabbare än SIFT.
Kio, Onoise Gerald. "Distortion correction for non-planar deformable projection displays through homography shaping and projected image warping." Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/16569/.
Full textBazargani, Hamid. "Real-Time Recognition of Planar Targets on Mobile Devices. A Framework for Fast and Robust Homography Estimation." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31698.
Full textXu, Jun [Verfasser]. "A Textile Fabric Protruding Fibers Measurement System Based on Camera Vision and Variable Homography / Jun Xu." Düren : Shaker, 2019. http://d-nb.info/119052600X/34.
Full textBooks on the topic "Homography and homography decomposition"
Eves, Howard, and Roland Deaux. Introduction to the Geometry of Complex Numbers. Dover Publications, Incorporated, 2013.
Find full textDeaux, Roland. Introduction to the Geometry of Complex Numbers. Dover Publications, Incorporated, 2013.
Find full textBook chapters on the topic "Homography and homography decomposition"
Kanatani, Kenichi, Yasuyuki Sugaya, and Yasushi Kanazawa. "Homography Computation." In Guide to 3D Vision Computation, 81–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48493-8_6.
Full textZhang, Beiwei, and Y. F. Li. "Homography-Based Dynamic Calibration." In Intelligent Systems, Control and Automation: Science and Engineering, 57–91. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2654-3_4.
Full textZhang, Jirong, Chuan Wang, Shuaicheng Liu, Lanpeng Jia, Nianjin Ye, Jue Wang, Ji Zhou, and Jian Sun. "Content-Aware Unsupervised Deep Homography Estimation." In Computer Vision – ECCV 2020, 653–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58452-8_38.
Full textXiang, Tian-Zhu, Gui-Song Xia, and Liangpei Zhang. "Image Stitching Using Smoothly Planar Homography." In Pattern Recognition and Computer Vision, 524–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03398-9_45.
Full textBimbo, Alberto Del, Fernando Franco, and Federico Pernici. "Local Homography Estimation Using Keypoint Descriptors." In Lecture Notes in Electrical Engineering, 203–17. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3831-1_12.
Full textSakamoto, Masatoshi, Yasuyuki Sugaya, and Kenichi Kanatani. "Homography Optimization for Consistent Circular Panorama Generation." In Advances in Image and Video Technology, 1195–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949534_121.
Full textLoan, Ton Thi Kim, Xuan-Qui Pham, Huu-Quoc Nguyen, Nguyen Dao Tan Tri, Ngo Quang Thai, and Eui-Nam Huh. "Homography-Based Motion Detection in Screen Content." In Advances in Computer Science and Ubiquitous Computing, 875–81. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0281-6_122.
Full textNam, Siwook, Hanjoo Kim, and Jaihie Kim. "Trajectory Estimation Based on Globally Consistent Homography." In Computer Analysis of Images and Patterns, 214–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45179-2_27.
Full textWang, Xiang, Chen Wang, Xiao Bai, Yun Liu, and Jun Zhou. "Deep Homography Estimation with Pairwise Invertibility Constraint." In Lecture Notes in Computer Science, 204–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97785-0_20.
Full textYang, Xiaohang, Lingtong Kong, Ziyun Liang, and Jie Yang. "Homography Estimation Network Based on Dense Correspondence." In Communications in Computer and Information Science, 632–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92310-5_73.
Full textConference papers on the topic "Homography and homography decomposition"
Manerikar, Ninad, Minh-Duc Hua, Simone De Marco, and Tarek Hamel. "Riccati observer design for homography decomposition." In 2020 European Control Conference (ECC). IEEE, 2020. http://dx.doi.org/10.23919/ecc51009.2020.9143740.
Full textOzuag, Ersin, and Sarp Erturk. "A homography matrix decomposition based video synchronization approach." In 2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2014. http://dx.doi.org/10.1109/siu.2014.6830661.
Full textLiu, He, Hiroyuki Hase, and Shogo Tokai. "Deeper Understanding on Solution Ambiguity by Homography Decomposition." In Robotics and Applications. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.740-004.
Full textPaliwal, Pinak, and Vikas Paliwal. "3D Scene Angles using UL Decomposition of Planar Homography." In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021. http://dx.doi.org/10.1109/iccvw54120.2021.00230.
Full textZhang Xuebo, Fang Yongchun, Ma Bojun, Liu Xi, and Zhang Ming. "A fast homography decomposition technique for visual servo of mobile robots." In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605543.
Full textKukelova, Zuzana, Jan Heller, Martin Bujnak, and Tomas Pajdla. "Radial distortion homography." In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. http://dx.doi.org/10.1109/cvpr.2015.7298663.
Full textLiu, Shaoguo, Haibo Wang, Jixia Zhang, Franck Davoine, and Chunhong Pan. "Softferns for homography estimation." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6116288.
Full textCao, Si-Yuan, Jianxin Hu, Zehua Sheng, and Hui-Liang Shen. "Iterative Deep Homography Estimation." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.00192.
Full textLingrand, D. "Particular Forms of Homography Matrices." In British Machine Vision Conference 2000. British Machine Vision Association, 2000. http://dx.doi.org/10.5244/c.14.60.
Full textJain, Paresh Kumar. "Homography Estimation from Planar Contours." In Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06). IEEE, 2006. http://dx.doi.org/10.1109/3dpvt.2006.77.
Full textReports on the topic "Homography and homography decomposition"
Gonzales, Antonio, Cara Monical, and Tony Perkins. HSolo: Homography from a single affine aware correspondence. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1663258.
Full textBurks, Thomas F., Victor Alchanatis, and Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, October 2009. http://dx.doi.org/10.32747/2009.7591739.bard.
Full text