Academic literature on the topic 'Homology modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homology modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Homology modeling"
Pedersen, Jan, Stephen Searle, Andrew Henry, and Anthony R. Rees. "Antibody modeling: Beyond homology." ImmunoMethods 1, no. 2 (October 1992): 126–36. http://dx.doi.org/10.1016/s1058-6687(05)80035-x.
Full textAgami, Sarit, and Robert J. Adler. "Modeling of persistent homology." Communications in Statistics - Theory and Methods 49, no. 20 (May 20, 2019): 4871–88. http://dx.doi.org/10.1080/03610926.2019.1615091.
Full textRashmi, Rashmi, Sunil Kumar Rai, M. Shah M. Shah, Dinesh Kumar Baitha, and Dr Royana Singh. "Structural Classification of Pax7 Using Homology Modeling: A Functional Approach." Indian Journal of Applied Research 4, no. 5 (October 1, 2011): 430–31. http://dx.doi.org/10.15373/2249555x/may2014/133.
Full textIWADATE, Mitsuo, and Hideaki UMEYAMA. "FAMS: A Homology Modeling Program." Seibutsu Butsuri 42, no. 6 (2002): 282–84. http://dx.doi.org/10.2142/biophys.42.282.
Full textSudarsanam, Sucha, Carl J. March, and Subhashini Srinivasan. "Homology Modeling of Divergent Proteins." Journal of Molecular Biology 241, no. 2 (August 1994): 143–49. http://dx.doi.org/10.1006/jmbi.1994.1484.
Full textMENG, Zhen, Xiaoyan YOU, Chengying JIANG, and Juncai MA. "Homology Modeling for Sulfur Oxygenase/Reductase." Chinese Journal of Appplied Environmental Biology 16, no. 3 (August 20, 2010): 424–28. http://dx.doi.org/10.3724/sp.j.1145.2010.00424.
Full textXiang, Zhexin. "Advances in Homology Protein Structure Modeling." Current Protein & Peptide Science 7, no. 3 (June 1, 2006): 217–27. http://dx.doi.org/10.2174/138920306777452312.
Full textMoutran, A., A. Balan, C. S. Perez, L. C. S. Ferreira, R. C. C. Ferreira, and G. Neshich. "Homology modeling ofXanthomonas Citrimolybdate-binding protein." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c168. http://dx.doi.org/10.1107/s0108767305092834.
Full textViitanen, L., and T. A. Salminen. "Homology modeling ofArabidopsis thalianaglycolipid transfer protein." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (August 23, 2008): C227—C228. http://dx.doi.org/10.1107/s0108767308092696.
Full textKapp, Oscar H., and Jogeshwar Mukherjee. "MODELING OF RECEPTOR PROTEINS USING HOMOLOGY." INVESTIGATIVE RADIOLOGY 28, no. 12 (December 1993): 1212. http://dx.doi.org/10.1097/00004424-199312000-00149.
Full textDissertations / Theses on the topic "Homology modeling"
Meier, Armin. "Probabilistic protein homology modeling." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-171299.
Full textDiemand, Alexander Vasil. "Development of homology modeling techniques." [S.l. : s.n.], 2006.
Find full textChang, Jia-Ming 1978. "Influence of alignment uncertainty on homology and phylogenetic modeling." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/129301.
Full textLa mayoría de los análisis evolutivos están basados en modelos establecidos de alineamiento de secuencia múltiple. Desde un punto de vista computacional, es igual de complejo la estimación de un alineamiento correcto, como la obtención de un árbol correcto a partir del alineamiento. Recientemente varios trabajos han informado sobre la influencia del alineamiento en los análisis posteriores, y en la incertidumbre inherente a su estimación. El Capítulo 1 desarrolla el concepto de incertidumbre de alineación, tanto inherente a los datos (internos), como resultante de los sesgos metodológicos (externo). El Capítulo 2 presenta dos contribuciones mías para la mejora de los métodos de MSA a través del uso de la extensión de homología (TM‐Coffee) y gracias a un algoritmo de coincidencia de palabra mejorado (SymAlign). En el capítulo 3, se muestra cómo la incertidumbre de alineación puede ser utilizada para mejorar la confiabilidad del análisis filogenético. El capítulo 4 nos muestra como se puede obtener una mejora similar por medio de una simple adaptación de la puntuación transitiva del T-- Coffee, lo cual permite un análisis posterior para tener en cuenta la incertidumbre de alineación interna. El último capítulo contiene un análisis de los resultados actuales y los posibles futuros trabajos.
Wei, Tiandi. "Homology Modeling of Toll-Like Receptor Ligand-Binding Domains." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-115642.
Full textMeier, Armin [Verfasser], and Johannes [Akademischer Betreuer] Söding. "Probabilistic protein homology modeling / Armin Meier. Betreuer: Johannes Söding." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1053913818/34.
Full textLIMA, Sheyla Carla Barbosa da Silva. "Isolamento e caracterização in silico de ciclotídeos em milho (Zea mays) e centeio (Secale cereale)." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/16744.
Full textMade available in DSpace on 2016-04-20T16:40:36Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertacao_SheylaSilvaLima_2015.pdf: 4958893 bytes, checksum: 21511e1c9e1a86ea210befeb33c91543 (MD5) Previous issue date: 2015-02-24
FACEPE
Ciclotídeos são uma classe de peptídeos antimicrobianos (AMPs - do inglês Antimicrobial peptide) cíclicos de plantas, compostos de, aproximadamente, 30 resíduos de aminoácidos, sendo seis cisteínas conservadas e conectadas por três pontes de dissulfeto. Sua expressão é constitutiva, tendo sua principal função na defesa vegetal contra patógenos, que podem causar perdas significativas em culturas importantes para a agricultura, como no caso da família Poaceae que apresenta destacada importância econômica no Brasil e no mundo. Nesse estudo foi conduzida uma busca por genes relacionados a ciclotídeos vegetais, disponíveis em bancos de dados de acesso restrito e público, com vistas ao isolamento e caracterização in silico desses peptídeos. Através da busca nos genomas de Hevea brasiliensis, Manihot esculenta, Ricinus communis, Sorghum bicolor e Zea mays; bem como no transcriptoma de Vigna unguiculata foi verificado que apenas o genoma de Zea mays apresentou dois possíveis genes codificadores de ciclotídeos. Assim, primers foram desenhados para o isolamento destes genes em milho. Além da espécie Z. mays, as espécies Triticum aestivum (trigo) e Secale cereale (centeio), foram utilizadas para a tentativa de isolamento a partir dos pares de primers desenhados. Foram obtidos 19 fragmentos (amplicons), sendo quatro deles (zm315, zm316, zm317, sc359) com o domínio ciclotídeo, os três primeiros de milho e o último de centeio. Essas quatro sequências foram, então, submetidas a uma caracterização in silico, para predição da estrutura secundaria, terciaria e função predita. Verificou-se que esses peptídeos apresentam as seis cisteínas conservadas, três pontes dissulfeto e o padrão de aminoácidos entre as cisteínas, similar aos encontrados em ciclotídeos. Ainda foi possível a predição de algumas propriedades físico-químicas e modelagem por homologia para as quatro proteínas, o que mostrou a qualidade e confiabilidade dos modelos. Sugere-se que dois dos ciclotídeos isolados (zm315, zm316) pertençam a uma nova classe de peptídeos lineares, mas com características de ciclotídeos.
Cyclotides are a class of cyclic antimicrobial peptides (AMPs) present on plants, composed by approximately 30 amino acid residues, including six conserved cysteines connected by three disulphide bridges. Its expression is constitutive, with main function on plant defense against pathogens, that may cause significant losses in important cultivars, as in the case of Poaceae, a family that presents economic importance for the agriculture in Brazil and worldwide. This study performed a search for genes related to plant cyclotides, available in restricted and public access databases, aimed at their in silico isolation and characterization. Searching for these peptides in Hevea brasiliensis, Manihot esculenta, Ricinus communis, Sorghum bicolor, Vigna unguiculata and Zea mays genomes, we obtained two possible genes encoding Cyclotides in Z. mays. Thus, primers were designed for the isolation of these genes in maize as well in wheat (Triticum aestivum) and rye (Secale cereale) species. We obtained 19 amplicons and four of them (zm315, zm316, zm317, sc359) presented cyclotide domain. These four sequences were then subjected to in silico characterization, for predicting their secondary and tertiary structures, as well their function. It was found that these peptides present six conserved cysteines, three disulphide bridges and the amino acid pattern between the cysteines similar to those found in cyclotides. It was also possible to predict some physical chemical properties and also building a 3D protein by homology modeling for the four peptides, presenting high quality and reliability. Our analysis indicates that two isolated cyclotides (zm315, zm316) appear to belong to a new class of linear peptides, but with cyclotide features.
López, Muñoz Laura. "Homology modeling and structural analysis of the antipsychotic drugs receptorome." Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7228.
Full textThe study started with obtaining homology models for all the receptors putatively involved in the antipsychotic drugs receptorome, suitable for building consistent drug-receptor complexes. These complexes were structurally analyzed and compared using multivariate statistical methods, which in turn allowed the identification of the relationship between the pharmacological properties of the antipsychotic drugs and the structural differences in the receptor targets. The results can be exploited for the design of safer and more effective antipsychotic drugs with an optimum binding profile.
Tradicionalmente se asumía que los fármacos terapéuticamente efectivos actuaban interaccionando con un único receptor. Actualmente está ampliamente reconocido que el efecto farmacológico de la mayoría de los fármacos es más complejo y abarca a un conjunto de receptores, algunos asociados a los efectos terapéuticos y otros a los secundarios y toxicidad. Los fármacos antipsicóticos son un ejemplo de compuestos eficaces que se caracterizan por unirse a varios receptores simultáneamente (principalmente a receptores unidos a proteína G, GPCR). El trabajo de la presente tesis se ha centrado en el estudio de los mecanismos moleculares que determinan el perfil de afinidad de unión por múltiples receptores de los fármacos antipsicóticos.
En primer lugar se construyeron modelos de homología para todos los receptores potencialmente implicados en la actividad farmacológica de dichos fármacos, usando una metodología adecuada para construir complejos fármaco-receptor consistentes. La estructura de estos complejos fue analizada y se llevó a cabo una comparación mediante métodos estadísticos multivariantes, que permitió la identificación de asociaciones entre la actividad farmacológica de los fármacos antipsicóticos y diferencias estructurales de los receptores diana. Los resultados obtenidos tienen interés para ser explotados en el diseño de fármacos antipsicóticos con un perfil farmacológico óptimo, más seguros y eficaces.
Grundy, William Noble. "A bayesian approach to motif-based protein modeling /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9904723.
Full textStanton, Suzanne Louise. "Homology Modeling and Molecular Docking of Antagonists to Class B G-Protein Coupled Receptor Pituitary Adenylate Cyclase Type 1 (PAC1R)." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/624.
Full textArnold, Matthew Scott. "Characterization of the thermostable nature of the alpha and beta tubulin proteins in Cyanidium caldarium and Cyanidioschyzon merolae." Thesis, [Blacksburg, Va. : University Libraries, Virginia Polytechnic Institute and State University, 2004. http://scholar.lib.vt.edu/theses/available/etd-03222004-144731.
Full textBooks on the topic "Homology modeling"
Orry, Andrew J. W., and Ruben Abagyan, eds. Homology Modeling. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-588-6.
Full textFilipek, Sławomir, ed. Homology Modeling. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2974-1.
Full textXu, Tianchuan. Loop Prediction and Homology Modeling with High Resolution. [New York, N.Y.?]: [publisher not identified], 2020.
Find full textLimited, Oxford Molecular. Cameleon: Protein sequence homology modelling system : user's guide : [version 2.0]. Oxford: Oxford Molecular, 1992.
Find full textOrry, Andrew J. W., and Ruben Abagyan. Homology Modeling: Methods and Protocols. Humana Press, 2016.
Find full textMaia, Rafael Trindade, Rômulo Maciel de Moraes Filho, and Magnólia de Araújo Campos. Homology Molecular Modeling: Perspectives and Applications. IntechOpen, 2021.
Find full textHomology Molecular Modeling - Perspectives and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.91624.
Full textThakur, Aman, Vineet Mehta, Priyanka Nagu, and Kiran Goutam. Computer-Aided Drug Design: QSAR, Molecular Docking, Virtual Screening, Homology and Pharmacophore Modeling. de Gruyter GmbH, Walter, 2024.
Find full textBook chapters on the topic "Homology modeling"
Krieger, Elmar, Sander B. Nabuurs, and Gert Vriend. "Homology Modeling." In Structural Bioinformatics, 509–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721204.ch25.
Full textFomenko, Anatolij T., and Tosiyasu L. Kinii. "Homology." In Topological Modeling for Visualization, 211–44. Tokyo: Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-66956-2_11.
Full textSimms, John, Nathan E. Hall, Polo H. C. Lam, Laurence J. Miller, Arthur Christopoulos, Ruben Abagyan, and Patrick M. Sexton. "Homology Modeling of GPCRs." In Methods in Molecular Biology, 97–113. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-317-6_7.
Full textStamboulian, Mouses, and Nashat Mansour. "Scatter Search for Homology Modeling." In Lecture Notes in Computer Science, 66–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41000-5_7.
Full textUbhayasekera, Wimal. "Homology Modeling for Enzyme Design." In Cellulases, 301–20. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7877-9_21.
Full textSchwede, Torsten. "Homology Modeling of Protein Structures." In Encyclopedia of Biophysics, 992–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_417.
Full textStavrou, Anastasios, Sudad Dayl, and Ralf Schmid. "Homology Modeling of P2X Receptors." In Methods in Molecular Biology, 65–75. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9717-6_4.
Full textBordner, Andrew J. "Force Fields for Homology Modeling." In Methods in Molecular Biology, 83–106. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-588-6_4.
Full textSmith, Andrew T., Ping Du, and Gilda H. Loew. "Homology Modeling of Horseradish Peroxidase." In Nuclear Magnetic Resonance of Paramagnetic Macromolecules, 75–93. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8573-6_4.
Full textSylte, Ingebrigt, Mari Gabrielsen, and Kurt Kristiansen. "Homology Modeling of Transporter Proteins." In Methods in Molecular Biology, 247–64. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2974-1_14.
Full textConference papers on the topic "Homology modeling"
Zomorodian, Afra, and Gunnar Carlsson. "Localized Homology." In IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07). IEEE, 2007. http://dx.doi.org/10.1109/smi.2007.25.
Full textVieira, Diogo Munaro, Elvismary Molina de Armas, Maria L. G. Jaramillo, Marcos Catanho, Antonio B. Miranda, Edward Hermann Haeusler, and Sérgio Lifschitz. "A New Data Modeling Approach for Alignment-free Biological Applications." In Simpósio Brasileiro de Banco de Dados. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/sbbd.2023.232471.
Full textYanbo Zhang, Meiying Hu, Guohua Zhong, and Shaohua Chen. "Homology modeling and docking study of GyrB." In 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893514.
Full textDoong, Shing-hwang. "Protein Homology Modeling with Heuristic Search for Sequence Alignment." In Proceedings of the 40th Annual Hawaii International Conference on System Sciences. IEEE, 2007. http://dx.doi.org/10.1109/hicss.2007.453.
Full textGodshall, Brian G., and Brian Y. Chen. "Improving accuracy in binding site comparison with homology modeling." In 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2012. http://dx.doi.org/10.1109/bibmw.2012.6470291.
Full textDalila Wan Chik, Wan, Ruzianisra Mohamed, Abu Bakar Abdul Majeed, and Siti Azma Jusoh. "Sequence analysis and homology modeling of TRPV5 and TRPV6 channels." In 2012 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). IEEE, 2012. http://dx.doi.org/10.1109/isbeia.2012.6422900.
Full textVergne, A., I. Flint, L. Decreusefond, and P. Martins. "Homology based algorithm for disaster recovery in wireless networks." In 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE, 2014. http://dx.doi.org/10.1109/wiopt.2014.6850366.
Full textYang, Jiaoyan, Mingjun Liao, Qingye Zhang, Wenjing Xiao, Zhibo Cai, Yonghong Yang, Jian Wan, and Shao Yang. "Expression and Homology Modeling of Sterol 14alpha-Demethylase from Magnaporthe Grisea." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.27.
Full textChen, LiHua, GuoHui Liu, Qiang Wang, and WanGuo Hou. "Homology modeling of the three-dimensional structure of bovine serum albumin." In 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2010. http://dx.doi.org/10.1109/bmei.2010.5639708.
Full textRavi, D., S. Santhi, R. Parthasarathy, and V. Vijayabharathi. "Homology Modeling of Receptor Kinase (SERK) Enzyme from Embryogenesis of Endosperms." In 2014 International Conference on Intelligent Computing Applications (ICICA). IEEE, 2014. http://dx.doi.org/10.1109/icica.2014.12.
Full textReports on the topic "Homology modeling"
GRIBSKOV, M. INTEGRATION OF STRUCTURAL AND SEQUENCE INFORMATION FOR HOMOLOGY-BASED MODELING OF PROTEINS. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/814008.
Full textAvdjieva, Irena, Ivan Terziyski, Gergana Zahmanova, Valeria Simeonova, Ognyan Kulev, Evgeny Krustev, Milko Krachunov, Maria Nisheva, and Dimitar Vassilev. Homology Based Computational Modelling of Hepatitis-E Viral Fusion Capsid Protein. Balkan, Black sea and Caspian sea Regional Network for Space Weather Studies, March 2019. http://dx.doi.org/10.7546/crabs.2019.03.10.
Full text