Academic literature on the topic 'Homotopy analysis method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homotopy analysis method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Homotopy analysis method"
He, Ji-Huan. "Comparison of homotopy perturbation method and homotopy analysis method." Applied Mathematics and Computation 156, no. 2 (September 2004): 527–39. http://dx.doi.org/10.1016/j.amc.2003.08.008.
Full textAhmad Soltani, L., E. Shivanian, and Reza Ezzati. "Shooting homotopy analysis method." Engineering Computations 34, no. 2 (April 18, 2017): 471–98. http://dx.doi.org/10.1108/ec-10-2015-0329.
Full textLiao, Shijun. "Comparison between the homotopy analysis method and homotopy perturbation method." Applied Mathematics and Computation 169, no. 2 (October 2005): 1186–94. http://dx.doi.org/10.1016/j.amc.2004.10.058.
Full textHe, Ji-Huan. "Homotopy Perturbation Method with an Auxiliary Term." Abstract and Applied Analysis 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/857612.
Full textNave, Ophir, Shlomo Hareli, and Vladimir Gol’dshtein. "Singularly perturbed homotopy analysis method." Applied Mathematical Modelling 38, no. 19-20 (October 2014): 4614–24. http://dx.doi.org/10.1016/j.apm.2014.03.013.
Full textHuseen, Shaheed N. "A Comparative Study of q-Homotopy Analysis Method and Liao’s Optimal Homotopy Analysis Method." Advances in Computer and Communication 1, no. 1 (December 15, 2020): 36–45. http://dx.doi.org/10.26855/acc.2020.12.004.
Full textLiang, Songxin, and David J. Jeffrey. "Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation." Communications in Nonlinear Science and Numerical Simulation 14, no. 12 (December 2009): 4057–64. http://dx.doi.org/10.1016/j.cnsns.2009.02.016.
Full textLIU, CHENG-SHI, and YANG LIU. "COMPARISON OF A GENERAL SERIES EXPANSION METHOD AND THE HOMOTOPY ANALYSIS METHOD." Modern Physics Letters B 24, no. 15 (June 20, 2010): 1699–706. http://dx.doi.org/10.1142/s0217984910024079.
Full textDas, S., and P. K. Gupta. "Application of homotopy perturbation method and homotopy analysis method to fractional vibration equation." International Journal of Computer Mathematics 88, no. 2 (November 28, 2010): 430–41. http://dx.doi.org/10.1080/00207160903474214.
Full textMotsa, Sandile Sydney, Precious Sibanda, Gerald T. Marewo, and Stanford Shateyi. "A Note on Improved Homotopy Analysis Method for Solving the Jeffery-Hamel Flow." Mathematical Problems in Engineering 2010 (2010): 1–11. http://dx.doi.org/10.1155/2010/359297.
Full textDissertations / Theses on the topic "Homotopy analysis method"
Baxter, Mathew. "Analytical solutions to nonlinear differential equations arising in physical problems." Doctoral diss., University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6247.
Full textPh.D.
Doctorate
Mathematics
Sciences
Mathematics
Jain, Divyanshu. "MVHAM an extension of the homotopy analysis method for improving convergence of the multivariate solution of nonlinear algebraic equations as typically encountered in analog circuits /." Cincinnati, Ohio : University of Cincinnati, 2007. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=ucin1194974755.
Full textAdvisor: Harold W. Carter. Title from electronic thesis title page (viewed Feb. 18, 2008). Includes abstract. Keywords: Homotopy Analysis Method; Solution of Nonlinear Algebraic Equations; Convergence. Includes bibliographical references.
Gedicke, Joscha Micha. "On the numerical analysis of eigenvalue problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16841.
Full textThis thesis "on the numerical analysis of eigenvalue problems" consists of five major aspects of the numerical analysis of adaptive finite element methods for eigenvalue problems. The first part presents a combined adaptive finite element method with an iterative algebraic eigenvalue solver for a symmetric eigenvalue problem of asymptotic quasi-optimal computational complexity. The second part introduces fully computable two-sided bounds on the eigenvalues of the Laplace operator on arbitrarily coarse meshes based on some approximation of the corresponding eigenfunction in the nonconforming Crouzeix-Raviart finite element space plus some postprocessing. The efficiency of the guaranteed error bounds involves the global mesh-size and is proven for the large class of graded meshes. The third part presents an adaptive finite element method (AFEM) based on nodal-patch refinement that leads to an asymptotic error reduction property for the adaptive sequence of simple eigenvalues and eigenfunctions of the Laplace operator. The proven saturation property yields reliability and efficiency for a class of hierarchical a posteriori error estimators. The fourth part considers a posteriori error estimators for convection-diffusion eigenvalue problems as discussed by Heuveline and Rannacher (2001) in the context of the dual-weighted residual method (DWR). Two new dual-weighted a posteriori error estimators are presented. The last part presents three adaptive algorithms for eigenvalue problems associated with non-selfadjoint partial differential operators. The basis for the developed algorithms is a homotopy method which departs from a well-understood selfadjoint problem. Apart from the adaptive grid refinement, the progress of the homotopy as well as the solution of the iterative method are adapted to balance the contributions of the different error sources.
Rodrigues, Carla Cristina Morbey. "Topological and dynamical complexity in epidemiological and ecological systems." Doctoral thesis, Universidade de Évora, 2017. http://hdl.handle.net/10174/21241.
Full textWise, Steven M. "POLSYS_PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36933.
Full textMaster of Science
Kangas, J. (Jani). "Separation process modelling:highlighting the predictive capabilities of the models and the robustness of the solving strategies." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526203768.
Full textTiivistelmä Työn tavoitteena oli muotoilla prosessin käyttäytymisen ennustamiseen kykeneviä erotusprosessimalleja ja niiden ratkaisuun käytettäviä luotettavia strategioita. Vaikka kaikkien erotusprosessimallien tulisi olla ennustavia, on tällä hetkellä useita kohteita, joissa prosessin käyttäytymistä ei voida ennustaa siten, että käytettävissä olisi sekä ilmiöpohjainen malli että ratkaisuun soveltuva luotettava strategia. Tässä työssä erotusprosessimalleista kohteina tarkasteltiin neste-neste-erotuksen ja membraanierotuksen kuvaukseen käytettäviä malleja. Neste-neste-erotusmallien luotettava ratkaisu vaatii yleensä faasistabiilisuusongelman ratkaisua. Lisäksi faasien koostumusten luotettava ennustaminen pohjautuu faasistabiilisuusanalyysiin. Faasistabiilisuusongelmalla on useita mahdollisia ratkaisuja, jotka kaikki tulee löytää, jotta voitaisiin varmistaa luotettava mallin ratkaisu sekä prosessimallin ennustuskyvyn säilyminen. Kaikkien ratkaisujen löytäminen on sekä vaikeaa että epätarkkaa paikallisesti konvergoituvilla ratkaisumenetelmillä. Tämän vuoksi globaaleihin ratkaisumenetelmiin kuuluvia modifioituja rajoitettuja homotopiamenetelmiä kehitettiin edelleen, jotta faasistabiilisuusongelma saataisiin ratkaistua luotettavasti. Ratkaisun luotettavuus vaati sekä muuttujien että homotopiaparametrin rajoittamista ja ongelman triviaalin ratkaisun käyttöä ratkaisustrategiassa. Tämä käyttäytyminen todennettiin useissa neste-nestetasa-painoa kuvaavissa esimerkeissä. Membraanierotusta tarkasteltaessa ennustava malli voidaan muotoilla käyttämällä Maxwell-Stefan pohjaista mallia. Maxwell-Stefan lähestymistavalla voidaan ennustaa monikomponenttiseosten erotusta perustuen puhtaiden komponenttien membraanin läpäisystä saatuun mittausaineistoon. Toisaalta mallin ratkaisu vaatii luotettavan ratkaisustrategian, jossa hyötykäytetään kohteesta riippuvaa tietoa. Näitä kysymyksiä havainnollistettiin H2/CO2 seoksen erotuksessa MFI-zeoliitti-membraanilla korkeassa paineessa. Samoin seosten adsorboitumiskäyttäytymistä ennustettiin onnistuneesti pelkästään puhtaiden komponenttien adsorptiodatan pohjalta. Kokonaisuutena voidaan todeta, että tarkasteltujen erotusprosessimallien ennustavuutta voidaan parantaa yhdistämällä malli, jolla on selkeä ilmiöpohja ja luotettava ratkaisustrategia. Lisäksi mallien käytettävyys erotusprosessien suunnittelussa on parantunut työn tulosten pohjalta
Awais, Muhammad. "Symmetry Transforms, Global Plasma Equilibria and Homotopy Analysis Method." Thesis, 2010. http://hdl.handle.net/1974/5987.
Full textThesis (Master, Mathematics & Statistics) -- Queen's University, 2010-08-24 17:33:50.341
Moghtadaei, Mohsen. "Spectral-Homotopy analysis method for solving a nonlinear second order BVP." Master's thesis, 2013. http://hdl.handle.net/10316/94880.
Full textA modification of the homotopy analysis method(HAM)for solving nonlinear second order boundary value problem(BVP) is proposed.the implementation of new approach is demonstrate by solving the Darcy-Brinkman-Forchheimer equation for steady fully developed fluid flow in a horizontal channel filled with a prous medium.The model equation is solved concurrently using the standard HAM approach and numerically using a shooting method based on the fourth order Rang-Kutta scheme.The results demonstrate that the new spectral homotopy analysis method is more efficient and converges faster than the standard homotopy analysis method
Wei-ChungTien and 田偉中. "Application of Homotopy Analysis Method for Non-linear Heat Transfer Problems." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/57842771834640598049.
Full text國立成功大學
機械工程學系碩博士班
101
In this research, the homotopy analysis method is applied to investigate the non-linear heat transfer problems. Unlike all other analytic methods, this approximate analytical method is a powerful and easy-to-use tool for non-linear problems and it provides us with a simple way to adjust and control the convergence region of solution series. Without the need of iteration, the obtained solution is in the form of an infinite power series. This study contains three themes. The first topic is about the natural convection boundary layer flow with effects of thermal and mass diffusion. The non-dimensional velocity, temperature and concentration fields are well illustrated. And the impact of the Prandtl number, Schmidt number and the buoyancy parameter on the flow are widely discussed in detail. Next, heat transfer problem with four different shape of longitudinal fins (rectangular, triangular and parabolic profiles) is analyzed. Both the thermal conductivity and heat transfer coefficient are assumed to be functions of temperature. The obtained solution has high accuracy when comparing it with other-generated by the 4th-order Runge-Kutta method. The fin efficiency and the optimum fin length are also investigated in detail. The third research topic is about the transient heat transfer processes under periodical temperature variation condition occurring in a convective rectangular fin with variable thermal conductivity. The effects of the physical applicable parameters on the non-dimensional temperature distribution along the fin surface are widely discussed.
Oguntala, George A., G. Sobamowo, Y. Ahmed, and Raed A. Abd-Alhameed. "Application of approximate analytical technique using the homotopy perturbation method to study the inclination effect on the thermal behavior of porous fin heat sink." 2018. http://hdl.handle.net/10454/16637.
Full textThis article presents the homotopy perturbation method (HPM) employed to investigate the effects of inclination on the thermal behavior of a porous fin heat sink. The study aims to review the thermal characterization of heat sink with the inclined porous fin of rectangular geometry. The study establishes that heat sink of an inclined porous fin shows a higher thermal performance compared to a heat sink of equal dimension with a vertical porous fin. In addition, the study also shows that the performance of inclined or tilted fin increases with decrease in length–thickness aspect ratio. The study further reveals that increase in the internal heat generation variable decreases the fin temperature gradient, which invariably decreases the heat transfer of the fin. The obtained results using HPM highlights the accuracy of the present method for the analysis of nonlinear heat transfer problems, as it agrees well with the established results of Runge–Kutta.
Supported in part by the Tertiary Education Trust Fund of Federal Government of Nigeria, and the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016SECRET-722424.
Books on the topic "Homotopy analysis method"
Liao, Shijun. Beyond perturbation: Introduction to homotopy analysis method. Boca Raton, Fla: Chapman & Hall/CRC Press, 2004.
Find full textLiao, Shijun. Homotopy Analysis Method in Nonlinear Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textHomotopy analysis method in nonlinear differential equations. Beijing: Higher Education Press, 2012.
Find full textLiao, Shijun. Homotopy Analysis Method in Nonlinear Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0.
Full textBeyond perturbation: Introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press, 2004.
Find full textKushkuley, Alexander. Geometric methods in degree theory for equivariant maps. Berlin: Springer, 1996.
Find full textSpain) UIMP-RSME Lluis Santaló Summer (2012 Santander. Recent advances in real complexity and computation: UIMP-RSME Lluis A. Santaló Summer School, Recent advances in real complexity and computation, July 16-20, 2012, Universidad Internacional Menéndez Pelayo, Santander, Spain. Edited by Montaña, Jose Luis, 1961- editor of compilation and Pardo, L. M. (Luis M.), editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textMotives, quantum field theory, and pseudodifferential operators: Conference on Motives, Quantum Field Theory, and Pseudodifferential Operators, June 2-13, 2008, Boston University, Boston, Massachusetts. Providence, R.I: American Mathematical Society, 2010.
Find full textBurgos Gil, José I. (José Ignacio), 1962- editor, ed. Feynman amplitudes, periods, and motives: International research conference on periods and motives : a modern perspective on renormalization : July 2-6, 2012, Institute de Ciencias Matematicas, Madris, Spain. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textLitvinov, G. L. (Grigoriĭ Lazarevich), 1944- editor of compilation and Sergeev, S. N., 1981- editor of compilation, eds. Tropical and idempotent mathematics and applications: International Workshop on Tropical and Idempotent Mathematics, August 26-31, 2012, Independent University, Moscow, Russia. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textBook chapters on the topic "Homotopy analysis method"
Yang, Xiaoyan, and Zhiliang Lin. "Homotopy Analysis Method." In Encyclopedia of Ocean Engineering, 1–8. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6963-5_271-1.
Full textLiao, Shijun. "Optimal Homotopy Analysis Method." In Homotopy Analysis Method in Nonlinear Differential Equations, 95–129. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_3.
Full textVajravelu, Kuppalapalle, and Robert A. van Gorder. "Further Applications of the Homotopy Analysis Method." In Nonlinear Flow Phenomena and Homotopy Analysis, 157–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32102-3_6.
Full textLiao, Shijun. "Basic Ideas of the Homotopy Analysis Method." In Homotopy Analysis Method in Nonlinear Differential Equations, 15–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_2.
Full textVajravelu, Kuppalapalle, and Robert A. van Gorder. "Application of the Homotopy Analysis Method to Fluid Flow Problems." In Nonlinear Flow Phenomena and Homotopy Analysis, 101–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32102-3_5.
Full textWang, Qi, and Fenglian Fu. "Solving Delay Differential Equations with Homotopy Analysis Method." In Communications in Computer and Information Science, 144–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15853-7_18.
Full textLiao, Shijun. "Some Methods Based on the HAM." In Homotopy Analysis Method in Nonlinear Differential Equations, 223–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_6.
Full textLiao, Shijun. "Introduction." In Homotopy Analysis Method in Nonlinear Differential Equations, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_1.
Full textLiao, Shijun. "A Boundary-layer Flow with an Infinite Number of Solutions." In Homotopy Analysis Method in Nonlinear Differential Equations, 363–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_10.
Full textLiao, Shijun. "Non-similarity Boundary-layer Flows." In Homotopy Analysis Method in Nonlinear Differential Equations, 383–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25132-0_11.
Full textConference papers on the topic "Homotopy analysis method"
Biazar, Jafar, Zainab Ayati, and Hamideh Ebrahimi. "Comparing Homotopy Perturbation Method and Adomian Decomposition Method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991054.
Full textGupta, Neelam, and Neel Kanth. "Study of heat flow in a rod using homotopy analysis method and homotopy perturbation method." In EMERGING TRENDS IN MATHEMATICAL SCIENCES AND ITS APPLICATIONS: Proceedings of the 3rd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5086635.
Full textBai, Xiaoli, James Turner, and John Junkins. "A Robust Homotopy Method for Equality Constrained Nonlinear Optimization." In 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5845.
Full textHajji, Mohamed A., and Fathi M. Allan. "Solving nonlinear boundary value problems using the homotopy analysis method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756537.
Full textZou, Li, Wang Zhen, Zong Zhi, and Tian Shoufu. "A study of the initial guess in Homotopy analysis method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756543.
Full textPınar, Zehra. "Modified multi-frequency homotopy analysis method for evolution equations." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992704.
Full textE. De Gaston, Raymond, and Michael Safonov. "A homotopy method for nonconservative stability robustness analysis." In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268717.
Full textLiu, Yuliang, Jinshu Lu, Hua Zhang, and Lin Li. "Homotopy Analysis Method of Internet Congestion Control Model." In 2010 International Conference on Communications and Mobile Computing (CMC). IEEE, 2010. http://dx.doi.org/10.1109/cmc.2010.224.
Full textEne, R. D., V. Marinca, and B. Cãruntu. "Optimal homotopy perturbation method for solving a nonlinear problem in elasticity." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756603.
Full textBarari, A., M. Omidvar, S. Gholitabar, D. D. Ganji, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Variational Iteration Method and Homotopy-Perturbation Method for Solving Second-Order Non-Linear Wave Equation." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790272.
Full textReports on the topic "Homotopy analysis method"
Watson, Layne T. Homotopy Methods in Control System Design and Analysis. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada251641.
Full text