Academic literature on the topic 'Homotopy type'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homotopy type.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Homotopy type"
Awodey, Steve, and Robert Harper. "Homotopy type theory." ACM SIGLOG News 2, no. 1 (2015): 37–44. http://dx.doi.org/10.1145/2728816.2728825.
Full textUmble, Ronald N. "Homotopy conditions that determine rational homotopy type." Journal of Pure and Applied Algebra 60, no. 2 (1989): 205–17. http://dx.doi.org/10.1016/0022-4049(89)90128-x.
Full textAVIGAD, JEREMY, KRZYSZTOF KAPULKIN, and PETER LEFANU LUMSDAINE. "Homotopy limits in type theory." Mathematical Structures in Computer Science 25, no. 5 (2015): 1040–70. http://dx.doi.org/10.1017/s0960129514000498.
Full textMandell, Michael A. "Cochains and homotopy type." Publications mathématiques de l'IHÉS 103, no. 1 (2006): 213–46. http://dx.doi.org/10.1007/s10240-006-0037-6.
Full textMELLOR, BLAKE. "FINITE TYPE LINK HOMOTOPY INVARIANTS." Journal of Knot Theory and Its Ramifications 08, no. 06 (1999): 773–87. http://dx.doi.org/10.1142/s0218216599000481.
Full textKazemi-Baneh, M. Z. "Homotopic Chain Maps Have Equals-Homology andd-Homology." International Journal of Mathematics and Mathematical Sciences 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/5647548.
Full textTom Dieck, Tammo. "The homotopy type of group actions on homotopy spheres." Archiv der Mathematik 45, no. 2 (1985): 174–79. http://dx.doi.org/10.1007/bf01270489.
Full textSHULMAN, MICHAEL. "Univalence for inverse diagrams and homotopy canonicity." Mathematical Structures in Computer Science 25, no. 5 (2014): 1203–77. http://dx.doi.org/10.1017/s0960129514000565.
Full textRIJKE, EGBERT, and BAS SPITTERS. "Sets in homotopy type theory." Mathematical Structures in Computer Science 25, no. 5 (2015): 1172–202. http://dx.doi.org/10.1017/s0960129514000553.
Full textLipshitz, Robert, and Sucharit Sarkar. "A Khovanov stable homotopy type." Journal of the American Mathematical Society 27, no. 4 (2014): 983–1042. http://dx.doi.org/10.1090/s0894-0347-2014-00785-2.
Full textDissertations / Theses on the topic "Homotopy type"
Quirin, Kevin. "Lawvere-Tierney sheafification in Homotopy Type Theory." Thesis, Nantes, Ecole des Mines, 2016. http://www.theses.fr/2016EMNA0298/document.
Full textSu, Zhixu. "Rational homotopy type of manifolds." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3378383.
Full textSilva, Júnior João Alves. "First steps in homotopy type theory." Universidade Federal de Pernambuco, 2014. https://repositorio.ufpe.br/handle/123456789/13853.
Full textKraus, Nicolai. "Truncation levels in homotopy type theory." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28986/.
Full textBiss, Daniel Kálmán 1977. "The homotopy type of the matroid Grassmannian." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8400.
Full textOrton, Richard Ian. "Cubical models of homotopy type theory : an internal approach." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289441.
Full textGallozzi, Cesare. "Homotopy type-theoretic interpretations of constructive set theories." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22317/.
Full textPöder, Balkeståhl Sebastian. "Simple homotopy type of the Hamiltonian Floer complex." Licentiate thesis, Uppsala universitet, Matematiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393298.
Full textVişinescu, Bogdan C. "K-Theory and Homotopy Type of Certain Infinite C*-Algebras." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1178909005.
Full textFass'so, Velenik Agnese. "Relative homotopy invariants of the type of the Lusternik-Schnirelmann category." [S.l.] : [s.n.], 2003. http://www.diss.fu-berlin.de/2003/277/index.html.
Full textBooks on the topic "Homotopy type"
Wen-tsün, Wu. Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081997.
Full textWen-tsün, Wu. Rational homotopy type: A constructive study via the theory of the I*-measure. Springer-Verlag, 1987.
Find full textFrance, Société mathématique de, ed. Les préfaisceaux comme modèles des types d'homotopie. Société mathématique de France, 2006.
Find full textRonald, Brown. Topology: A geometric account of general topology, homotopy types, and the fundamental groupoid. E. Horwood, 1988.
Find full textCorfield, David. Modal Homotopy Type Theory. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198853404.001.0001.
Full textHomotopy Type Theory: Univalent Foundations of Mathematics. The Univalent Foundations Program Institute for Advanced Study, 2013.
Find full textShulman, Michael. Homotopy Type Theory: A Synthetic Approach to Higher Equalities. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748991.003.0003.
Full textCorfield, David. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy. Oxford University Press, 2020.
Find full textBook chapters on the topic "Homotopy type"
Rutter, John W. "Homotopy type, homotopy groups." In Spaces of Homotopy Self-Equivalences. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0093755.
Full textWen-tsün, Wu. "Fundamental concepts. Measure and calculability." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081998.
Full textWen-tsün, Wu. "Dga and minimal model." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081999.
Full textWen-tsün, Wu. "The de rham-sullivan theorem and I*-measure." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082000.
Full textWen-tsün, Wu. "I*-measure and homotopy." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082001.
Full textWen-tsün, Wu. "I*-measure of a homogeneous space — The cartan theorem." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082002.
Full textWen-tsün, Wu. "Effective computation and axiomatic system of I*-measure." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082003.
Full textWen-tsün, Wu. "I*-measures connected with fibrations." In Rational Homotopy Type. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082004.
Full textAwodey, Steve. "Homotopy Type Theory." In Logic and Its Applications. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45824-2_1.
Full textBlanc, David. "Homotopy Operations and Rational Homotopy Type." In Categorical Decomposition Techniques in Algebraic Topology. Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7863-0_4.
Full textConference papers on the topic "Homotopy type"
Awodey, Steve, Nicola Gambino, and Kristina Sojakova. "Inductive Types in Homotopy Type Theory." In 2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012). IEEE, 2012. http://dx.doi.org/10.1109/lics.2012.21.
Full textBadiger, Chidanand, and T. Venkatesh. "Generalised (g) homotopy and generalised (g) homotopy type spaces." In 4TH INTERNATIONAL CONFERENCE ON THE SCIENCE AND ENGINEERING OF MATERIALS: ICoSEM2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0028740.
Full textFrumin, Dan, Herman Geuvers, Léon Gondelman, and Niels van der Weide. "Finite sets in homotopy type theory." In the 7th ACM SIGPLAN International Conference. ACM Press, 2018. http://dx.doi.org/10.1145/3176245.3167085.
Full textKunii, Tosiyasu L., and Masaki Hilaga. "Homotopy Type Theory for Big Data." In 2015 International Conference on Cyberworlds (CW). IEEE, 2015. http://dx.doi.org/10.1109/cw.2015.9.
Full textBuchholtz, Ulrik, Floris van Doorn, and Egbert Rijke. "Higher Groups in Homotopy Type Theory." In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2018. http://dx.doi.org/10.1145/3209108.3209150.
Full textBuchholtz, Ulrik, and Kuen-Bang Hou Favonia. "Cellular Cohomology in Homotopy Type Theory." In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2018. http://dx.doi.org/10.1145/3209108.3209188.
Full textSojakova, Kristina, Floris van Doorn, and Egbert Rijke. "Sequential Colimits in Homotopy Type Theory." In LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2020. http://dx.doi.org/10.1145/3373718.3394801.
Full textFrumin, Dan, Herman Geuvers, Léon Gondelman, and Niels van der Weide. "Finite sets in homotopy type theory." In CPP '18: Certified Proofs and Programs. ACM, 2018. http://dx.doi.org/10.1145/3167085.
Full textKraus, Nicolai, and Jakob von Raumer. "Path Spaces of Higher Inductive Types in Homotopy Type Theory." In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2019. http://dx.doi.org/10.1109/lics.2019.8785661.
Full textGilbert, Gaëtan. "Formalising real numbers in homotopy type theory." In CPP '17: Certified Proofs and Programs. ACM, 2017. http://dx.doi.org/10.1145/3018610.3018614.
Full text