To see the other types of publications on this topic, follow the link: Honeycomb structure.

Dissertations / Theses on the topic 'Honeycomb structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Honeycomb structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Arceneaux, Donald J. "A 3D Printed Polycaprolactone Honeycomb Structure." Thesis, University of Louisiana at Lafayette, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10640968.

Full text
Abstract:

The application of sophisticated geometric structures within future host materials for increasing energy absorption and compression strength, while being fabricated from crack-healing materials, is of high interest for many functions. Raw feedstock extrusion and three-dimensional printing (3DP) technology were used to develop precise honeycomb structures through intricate deposition of polycaprolactone (PCL) filament. For standardization purposes during 3D model slicing and print quality consistency, constant wall thickness was used for honeycomb structure fabrication, manipulating only the cellular width to obtain variation of cell size to wall thickness ratios.

The honeycomb structures’ compression behaviors were studied through use of in-plane quasi-static uniaxial compression testing. Multiple cycles of compression loading were applied to the specimens in both transverse and ribbon directions at temperatures of 5 °C, room temperature (i.e. 22 °C), and 40 °C at a speed of 1.27 mm/min (0.05 in/min) per ASTM D6641. The energy absorption efficiencies of the honeycomb structure were calculated based on the compression strengths and behaviors displayed, which were then used to obtain the stepping upward stress theoretically. Using the specified stepping upward stresses, the energy absorption capabilities were found in both the transverse and ribbon directions at different temperatures per unit volume. The ability for “shape recovery” of the structures after each loading cycle was also calculated.

Outcomes from this research displayed exceptional recovery of PCL honeycomb structures after repeated compression loading cycles. Samples with relative density of 0.20 absorbed energies of up to 0.99 J/cm3. Upon removing compression loads, samples were capable of shape recovery up to 80% after the first deformation and up to 72% after the fifth deformation. When PCL honeycomb structures are used to reinforce host materials, they increase energy absorption capabilities while being capable of crack-healing functions with remarkable compressive strength. These properties make PCL advantageous for many industries.

APA, Harvard, Vancouver, ISO, and other styles
2

Storozhenko, V. A., A. V. Myagkiy, and R. P. Orel. "Filtering of interference of inhomogeneous regular structure in thermal non-destructive control of cellular structures." Thesis, Eskisehir technical university, 2021. https://openarchive.nure.ua/handle/document/18954.

Full text
Abstract:
Honeycomb constructions are the most widely used materials in contemporary aviation and space technology. They are the basis for the housings of practically all products of this sector, where reliability of all parts should meet the in-creased requirements. Special attention is paid to the quality of composite materials and to the absence of defects such as the places of adhesion failure (exfoliation) between the skin and the honeycomb filler. Therefore, increase in the efficiency and reliability of thermal flaw detection, based on in-depth analysis of the processes of detecting defects and development of the principles of optimization of both the procedure of control and subsequent processing of the obtained information, is an important and relevant task.
APA, Harvard, Vancouver, ISO, and other styles
3

Stout, Sean Dakota. "DESIGN AND CHARACTERIZATION OF INTERMEDIATE TEMPERATURE SOLD OXIDE FUEL CELLS WITH A HONEYCOMB STRUCTURE; OPERATION, RESEARCH, AND OPPORTUNITIES." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1740.

Full text
Abstract:
The aim of this thesis is to propose the design process and considerations to be employed in the fabrication of a high-volumetric-power-density intermediate temperature solid oxide fuel cell (IT-SOFC), as well as the necessary characterization and analysis techniques for such a device. A novel hexagonal honeycomb design will be proposed with functionally graded electrodes and an alternative electrolyte – a previously unexplored configuration based on attained research. The potential use of CFD software to investigate mass and heat transport properties of an SOFC having such a design shall be discussed, as well as the utility of experimental methods such as the generation of a polarization curve and the use of SEM to characterize electrochemical performance and microstructure, respectively. Fabrication methods shall also be evaluated, and it will be shown that the proposed design is not only feasible but meets the goal of designing an SOFC with a power density of 2 W/cm3 operating at or below 650 C.
APA, Harvard, Vancouver, ISO, and other styles
4

Dove-Jay, Ashley. "Development, integration and testing of a 0-v honeycomb structure for aircraft morphing." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690034.

Full text
Abstract:
This thesis lays out the development, analysis, integration and testing of a camber morphing concept for control surfaces dealing with fluidic dynamics, with specific focus on replacing the outboard aileron of fixed-wing aircraft in an effort to increase associated fuel efficiency. Core to the development of the morphing concept was a zero Poisson's ratio (O-v) honeycomb. The state-of-the-art was studied, modified for compatibility with the application intended, was subjected to topological optimization to improve relevant performance charactelistics, and was validated through experimental studies. Mass was reduced by 20% and energy for morphing by 42-55% without affecting load-carrying capability; but fatigue life was reduced by 18%. A near-term performance study was conducted. The outboard aileron of a state-of-the-art A320 wing was replaced with the morphing equivalent, demonstrating higher efficiency and increasing aircraft range by 0.8-0.9% depending on weather conditions in a medium fidelity flight simulation (Heathrow to Amsterdam). A first-iteration long-term study, unrestricted by current design constraints, indicated a significant increase in aerodynamic efficiency; towards 50% for high control surface deflections. Coupled to a pre-stressed hyper-elastic surface skin and an an-ay of micro-linear actuators for morphing, the O-u honeycomb was integrated into a 1.05m span wing for wind-tunnel testing. The generated morphed shapes successfully met the overarching geometric objectives; significant reduction in chordwise and spanwise geometric discontinuities and pressure gradients. Comparison between FE and hammer-testing showed modal frequencies agreed with an average en-or of 8%. Comparison between CFD and wind-tunnel studies showed CL agreement with an average error of 0.07 CL. A methodology for whole wing conformal shape optimisation, based on modified Class Shape Transformations and Bemstein Polynomials, enabled by integration of the O-u honeycomb structure generated coupled to cellular micro-linear actuators, was developed and proposed as a logical step forward to explore the full potential of the morphing system proposed.
APA, Harvard, Vancouver, ISO, and other styles
5

Berkowitz, Charles Kyle. "Characterization of the debonding of graphite/epoxy-nomex honey comb sandwich structure." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/18188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gong, Xiaozhou. "Investigation of different geometric structure parameter for honeycomb textile composites on their mechanical performance." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/investigation-of-different-geometric-structure-parameter-for-honeycomb-textile-composites-on-their-mechanical-performance(500d9a32-6c18-4df6-9e5b-40ccdda4c6b3).html.

Full text
Abstract:
Textile honeycomb composites, with an array of hexagonal cells in the cross section, is a type of textile composites having the advantage of being light weight and energy absorbent over the solid composite materials. The aim of this research is to investigate the influence of the geometric parameters on textile honeycomb composites on their mechanical performances under low velocity impact, which can be used to help designer control over the textile honeycomb composites. Four groups of textile honeycomb composites, involving 14 varieties, have been systematically created for the experimental analysis. The geometric parameters of the honeycomb composites, including the cell opening angle, cell size, cell wall length ratio and structural parameters such as composite thickness, composite volume density are studied for their influence on the honeycomb composites under low-velocity impact. Followed by experimental work, honeycomb composites with 12 varieties are modelled by finite element method (FEM) to further investigate the honeycomb structure performance under various loading conditions including different impact energy (6J, 8.3J and 10J) and impactor shape (cylindrical and spherical). The 3D honeycomb fabrics are successfully manufactured and converted into textile honeycomb composites. It was found through the experimental and finite element analysis (FEA) that changes in geometric and structural parameters of the textile honeycomb composites have noted influences on the energy absorption, force attenuation and damage process of the structure. The length ratio of cell wall and the cell opening angle are the most effective parameters for controlling the energy absorption of the composites and composites with medium cell sizes tend to have more reliable mechanical performances under various loading conditions. And it is also found in FEA that cylindrical impacts are more threatening to human beings than the ball shaped impact. The methodology has been established by using FEM to investigate the composites more systematically in the current study. This helps to provide a faster and economic design cycle for the honeycomb composites, which can substantially decrease the time to take products from concept to the production.
APA, Harvard, Vancouver, ISO, and other styles
7

Gandy, Helene Tchoutouo Ndjountche. "Adhesiveless honeycomb sandwich structure with carbon graphite prepreg for primary structural application: a comparative study to the use of adhesive film." Thesis, Wichita State University, 2012. http://hdl.handle.net/10057/5388.

Full text
Abstract:
In the past two decades, researchers have been developing prepreg materials with matrix properties that can allow the elimination of the additional adhesive traditionally used between the core and the skins of composite sandwich structures. There have been several publications on self-adhesive prepreg used for sandwich structures; but none with a comparative study for primary structural application, from the same fabrication basis. This research focused on the properties of adhesiveless honeycomb sandwich structure with carbon graphite prepreg, while assessing the structure with adhesive film at the skin-to-core interface simultaneously. In the study, laminate and honeycomb sandwich panels were fabricated and tested with consistent lay-up, curing, and testing processes, all fully documented. Sandwich panels were made with the CYCOM 977-2 prepreg system from Cytec and the AF191 adhesive film from 3M, while the adhesiveless sandwich panel had the MTM45-1 prepreg systems from Advanced Composites Group (ACG). Laminate panels were also fabricated using the two different prepregs. Specimens from the panels where tested for physical and mechanical properties, as well as moisture absorption performance. The results obtained from the non-destructive testing and the experiments confirmed that the self-adhesive prepreg physical properties met the components and void content recommendations for use in primary structures. In addition to analysis of existing published data, mechanical tests were performed in room, hot and cold temperatures, as well as dry and wet conditions. The results suggested that aramid honeycomb sandwich structure with self-adhesive carbon graphite prepreg systems, alongside similar structure using additional adhesive, demonstrates the ability to be used for primary structure.
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
8

Buzys, Matas, and Sara Nilsson. "Development of a new test methodology for car-to-truck crash." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262654.

Full text
Abstract:
Till följ av de stora skadorna som riskeras vid frontalkollision mellan personbil och lastbil, utför Scania CV AB kraschtester för att bättre kunna utveckla komponenter med syfte att skydda passagerarna i personbilen. Den typ av test som denna studie bygger på utvärderar den s.k. FUP:en (engelska Front Underrun Protection). I dagsläget görs ett fullskaligt test, där en personbil avfyras in i en lastbil. Syftet med studien är att undersöka möjligheten att utveckla en förenklad test metod där endast de väsentliga komponenterna från lastbilen inkluderas, och en representativ struktur ersätter personbilen. Om möjligt kommer detta minska kostnaderna samt möjliggöra för större repeterbarhet. Tester och utvärderingar görs med hjälp av simulationer i LS-Dyna, ANSA & META, och designkoncept visualiseras i CAD-programmet CATIA V5. Resultat visar att det finns goda förutsättningar för att ersätta personbilen med en barriär av honeycomb struktur samt att lastbilen kan ersättas med en vagn där de väsentliga komponenterna fäst. Diskussioner kring simuleringarna och designen lyfter fram faktorer som visar på goda utvecklingsmöjligheter, men med betoning på det fortsatta arbetet som krävs.
Scania CV AB are developing components to prevent fatal damages during frontal collisions with passenger cars. Therefore, they need to test their assemblies and specifically FUP (Frontal Underrun Protection). Currently, a full-scale test is done in which a passenger car is launched into a truck. The purpose of this study is to examine and develop the possibility of having a simplified test procedure in which only the relevant components of the truck are included, and a representative structure replaces the car. If possible, this would reduce costs and allow for greater repeatability. Analysis and evaluations are done via finite element models using ANSA, LS-Dyna and META. The conceptual design is visualized using CATIA V5. Results show good indication that the passenger car can be replaced by a trolley with deformable barriers mounted on it and the truck can be replaced by a simplified structure with main FUP components mounted onto it. Discussions about the numerical models results and the conceptual design highlight factors that show promising possibilities, but with emphasis on the continued work that is required.
APA, Harvard, Vancouver, ISO, and other styles
9

Vinogradov, Nikolay. "Controlling Electronic and Geometrical Structure of Honeycomb-Lattice Materials Supported on Metal Substrates : Graphene and Hexagonal Boron Nitride." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-194089.

Full text
Abstract:
The present thesis is focused on various methods of controlling electronic and geometrical structure of two-dimensional overlayers adsorbed on metal surfaces exemplified by graphene and hexagonal boron nitride (h-BN) grown on transition metal (TM) substrates. Combining synchrotron-radiation-based spectroscopic and various microscopic techniques with in situ sample preparation, we are able to trace the evolution of overlayer electronic and geometrical properties in overlayer/substrate systems, as well as changes of interfacial interaction in the latter.It is shown that hydrogen uptake by graphene/TM substrate strongly depends on the interfacial interaction between substrate and graphene, and on the geometrical structure of graphene. An energy gap opening in the electronic structure of graphene on TM substrates upon patterned adsorption of atomic species is demonstrated for the case of atomic oxygen adsorption on graphene/TM’s (≥0.35 eV for graphene/Ir(111)). A non-uniform character of adsorption in this case – patterned adsorption of atomic oxygen on graphene/Ir(111) due to the graphene height modulation is verified. A moderate oxidation of graphene/Ir(111) is found largely reversible. Contrary, oxidation of h-BN/Ir(111) results in replacing nitrogen atoms in the h-BN lattice with oxygen and irreversible formation of the B2O3 oxide-like structure.      Pronounced hole doping (p-doping) of graphene upon intercalation with active agents – halogens or halides – is demonstrated, the level of the doping is dependent on the agent electronegativity. Hole concentration in graphene on Ir(111) intercalated with Cl and Br/AlBr3 is as high as ~2×1013 cm-2 and ~9×1012 cm-2, respectively.     Unusual periodic wavy structures are reported for h-BN and graphene grown on Fe(110) surface. The h-BN monolayer on Fe(110) is periodically corrugated in a wavy fashion with an astonishing degree of long-range order, periodicity of 2.6 nm, and the corrugation amplitude of ~0.8 Å. The wavy pattern results from a strong chemical bonding between h-BN and Fe in combination with a lattice mismatch in either [11 ̅1] or [111 ̅] direction of the Fe(110) surface. Two primary orientations of h-BN on Fe(110) can be observed corresponding to the possible directions of lattice match between h-BN and Fe(110).     Chemical vapor deposition (CVD) formation of graphene on iron is a formidable task because of high carbon solubility in iron and pronounced reactivity of the latter, favoring iron carbide formation. However, growth of graphene on epitaxial iron films can be realized by CVD at relatively low temperatures, and the formation of carbides can be avoided in excess of the carbon-containing precursors. The resulting graphene monolayer creates a periodically corrugated pattern on Fe(110): it is modulated in one dimension forming long waves with a period of ~4 nm parallel to the [001] direction of the substrate, with an additional height modulation along the wave crests. The novel 1D templates based on h-BN and graphene adsorbed on iron can possibly find an application in 1D nanopatterning. The possibility for growing high-quality graphene on iron substrate can be useful for the low-cost industrial-scale graphene production.
APA, Harvard, Vancouver, ISO, and other styles
10

Svanström, Martin. "Honeycomb & path generation : En struktur för en ständigt växande karta ochgenerell generation av slumpmässiga vägar." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-21244.

Full text
Abstract:
Ett spels karta är begränsande i det att när man valt en viss storlek kan man inte gå utanför den ramen utan att göra relativt resurskrävande operationer. Denna undersökning genomfördes för att se om en trädstruktur kan användas som lösning att hantera en honeycomb-struktur på ett lämpligt sätt för att ständigt kunna utöka ett spels karta. Resultatet visar att det är möjligt att använda trädstrukturen relativt bra till växande kartor men att det inte är att rekommendera till spel, eftersom strukturen i sig är en omväg. I samband med denna karta skapades en slumpmässig path-generator som skulle kunna användas till att generellt skapa slumpmässiga kartor i spel. För att se vad försvårigheter man stöter på när man utvecklar en slumpad map-generator, vilket visade sig vara svårt i och med att man hittade många specialfall.
APA, Harvard, Vancouver, ISO, and other styles
11

Favre, Benoit. "Crushing properties of hexagonal adhesively bonded honeycombs loaded in their tubular direction." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22620.

Full text
Abstract:
Thesis (M. S.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2007.
Committee Chair: Mulalo Doyoyo; Committee Co-Chair: Reginald Desroches; Committee Member: Laurence J. Jacobs.
APA, Harvard, Vancouver, ISO, and other styles
12

Puttmann, John Paul. "Spatially Targeted Activation of a SMP." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1525166147319011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Petras, Achilles. "Design of sandwich structures." Thesis, University of Cambridge, 1999. https://www.repository.cam.ac.uk/handle/1810/236995.

Full text
Abstract:
Failure modes for sandwich beams of GFRP laminate skins and Nomex honeycomb core are investigated. Theoretical models using honeycomb mechanics and classical beam theory are described. A failure mode map for loading under 3-point bending, is constructed, showing the dependence of failure mode and load on the ratio of skin thickness to span length and honeycomb relative density. Beam specimens are tested in 3-point bending. The effect of honeycomb direction is also examined. The experimental data agree satisfactorily with the theoretical predictions. The results reveal the important role of core shear in a sandwich beam's bending behaviour and the need for a better understanding of indentation failure mechanism. High order sandwich beam theory (HOSBT) is implemented to extract useful information about the way that sandwich beams respond to localised loads under 3-point bending. 'High-order' or localised effects relate to the non-linear patterns of the in-plane and vertical displacements fields of the core through its height resulting from the unequal deformations in the loaded and unloaded skins. The localised effects are examined experimentally by Surface Displacement Analysis of video images recorded during 3-point bending tests. A new parameter based on the intrinsic material and geometric properties of a sandwich beam is introduced to characterise its susceptibility to localised effects. Skin flexural rigidity is shown to play a key role in determining the way that the top skin allows the external load to pass over the core. Furthermore, the contact stress distribution in the interface between the central roller and the top skin, and its importance to an indentation stress analysis, are investigated. To better model the failure in the core under the vicinity of localised loads, an Arcan- type test rig is used to test honeycomb cores under simultaneous compression and shear loading. The experimental measurements show a linear relationship between the out-of-plane compression and shear in honeycomb cores. This is used to derive a failure criterion for applied shear and compression, which is combined with the high order sandwich beam theory to predict failure caused by localised loads in sandwich beams made of GFRP laminate skins and Nomex honeycomb under 3-point bending loading. Short beam tests with three different indenter's size are performed on appropriately prepared specimens. Experiments validate the theoretical approach and reveal the nature of pre- and post-failure behaviour of these sandwich beams. HOSBT is used as a compact computational tool to reconstruct failure mode maps for sandwich panels. Superposition of weight and stiffness contours on these failure maps provide carpet plots for design optimisation procedures.
APA, Harvard, Vancouver, ISO, and other styles
14

Tom, Louis-Georges. "Contribution à l'étude numérique de la propagation d'un défaut de collage dans une structure sandwich Nida." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1036/document.

Full text
Abstract:
SAFRAN Aircelle produit des panneaux sandwiches constitués de peaux composites collées sur une âme nid d’abeille (« Nida ») en aluminium pour des applications de nacelle de moteur d’avion. Des décollements locaux peuvent exister à l’interface peau/Nida et réduire significativement la capacité structurale de ces sandwiches. L’objectif de cette thèse entre l’ISMANS et SAFRAN Aircelle réside dans la mise en place d’une approche de type « Virtual testing » pour réduire les coûts de validation et de vérification des sandwiches possédant des décollements.L’originalité de ces travaux vient du choix de la représentation des sandwiches à travers deux familles de modèles : les modèles « âme pleine » (modélisation volumique) prévus pour une utilisation en bureau d’études et les modèles « âme creuse » (modélisation physique des clinquants) permettant d’analyser finement les mécanismes de propagation des décollements peau/Nida. Une technique de sous-structuration a été mise en oeuvre avec succès et a permis de réduire significativement les temps de calcul du modèle « âme creuse ».La mécanique de l’endommagement, avec des éléments à zone cohésive, a été choisie pour déterminer numériquement le seuil de propagation des décollements, après une étude comparative avec la mécanique linéaire élastique de la rupture et une méthode de recalage essais. Pour alimenter les lois d’endommagement disponibles dans les codes industriels, une méthode expérimentale a été proposée. Des essais de type DCB sandwiches ont permis de remonter aux propriétés mécaniques de l’interface en mode d’ouverture et en mode mixte, avec un seul montage. Ces essais ont été recalés avec succès, notamment en mode I pur
SAFRAN Aircelle manufactures sandwich structures made of composite skins bonded to aluminium honeycomb core for aircraft’s engines nacelles applications. Local disbonds may occur at the skins/core interface and lead to significant strength reduction under in-service loadings. The present work was done with ISMANS and SAFRAN Aircelle and deals with the introduction of a “Virtual Testing” approach in order to reduce substantiation and validation cost of sandwiches structures with embedded disbond.In this study we have two kinds of models at two scales to describe the sandwich behaviour: the “homogeneized” model, which provide an industrial tool for design offices and the “detailed” model, which provide a specific tool for accurate analysis of disbond growth initiation at skin/core interface. Due to the numerical cost of the second type of model, the superelement technique has been successfully used which permits to gain computational costs without altering the result quality.Damage mechanics, with cohesive zone elements, have been chosen to numerically determine the disbond growth threshold after a comparative study with linear fracture mechanics and a full experimental method. Inputs data for industrial code using cohesive zone elements have been studied through an experimental investigation. DCB type tests on reinforced sandwiches were perfomed in order to determine the energy release rate at the skin/core interface. Various mode-mixity and pure opening mode are available using the same testing tool. The latter has been successfully modelled
APA, Harvard, Vancouver, ISO, and other styles
15

Escalé, Pierre. "Elaboration de films nid d'abeille hiérarchiquement structurés à partir de copolymères : synthèse, structuration et propriétés de surface." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3027/document.

Full text
Abstract:
Ce travail de thèse de doctorat vise à l’élaboration de surfaces poreuses hiérarchiquement structurées à partir de copolymères aux structures bien définies ainsi qu’à l’étude de leurs propriétés. La chimie des polymères, en constante évolution, a permis dans ce travail de thèse la synthèse de copolymères diblocs de natures diverses par des techniques de polymérisation radicalaire contrôlée tout aussi variées. En effet, la polymérisation radicalaire contrôlée par les nitroxydes (NMP), par transfert d’atome (ATRP), par transfert réversible d’addition/fragmentation (RAFT) et par le Cu(0) ont été utilisées pour la synthèse de copolymères diblocs associant un bloc de poly(styrène) à divers blocs d’acrylates ou de 4-vinylpyridine. Intimement associée à un procédé d’élaboration basé sur l’évaporation de solvant, nommé figure de souffle (trad. Breath Figure), la synthèse de ces copolymères a permis l’élaboration de surfaces poreuses hiérarchiquement structurées aux échelles du micro et nanomètre. Les différentes phases ont conféré à ces matériaux des propriétés particulières d’adhésion, de mouillabilité ou encore de bioactivité. Ces recherches doctorales ont bénéficié de la double compétence du laboratoire en chimie et en physico-chimie des polymères. En effet, des techniques de microscopie (optique, à force atomique ou électronique), de diffusion de rayonnement (neutrons et rayon-X aux petits angles) ainsi que des tests de pégosité et de mouillabilité ont permis l’étude de la structuration des films ainsi que l’étude de leurs propriétés de surface
The present studies aim at designing hierarchically structured porous surface from copolymers with well defined structures. As a science in constant evolution, polymer chemistry, enable the synthesis of diblock copolymers with different natures by the mean of various radical controlled polymerization techniques. Indeed, radical controlled polymerization with nitroxyde (NMP), by atom transfer (ATRP), by reversible addition/fragmentation transfer (RAFT) or by Cu(0) were used for the synthesis of diblock copolymers based on polystyrene and different acrylates or 4-vinylpyridine blocks. The intimately association between a fast solvent evaporation process named the Breath Figure and the synthesis of the copolymers enable the production of hierarchically structured materials from micro to nanoscale. The nature of the different blocks confers adhesion, wettability or bioactivity properties to these materials. These researches benefit from the chemistry and physico-chemistry laboratory competences. Indeed, microscopy techniques (optical, atomic force and electronic), scattering (small angle neutron or X-ray) as well as tack or wettability measurements enable the complete characterization of films structuration and point up their properties
APA, Harvard, Vancouver, ISO, and other styles
16

Akoumeh, Rayane. "Films hiérarchiquement micro structurés en nid d’abeilles : élaboration, étude de la topographie et de la chimie de surface par TOF-SIMS." Thesis, Pau, 2016. http://www.theses.fr/2016PAUU3052/document.

Full text
Abstract:
Dans le domaine des polymères, l'auto-organisation de la matière a été largement étudiée dans les dernières années et beaucoup de progrès dans le domaine des films ordonnés, générés par l'auto-assemblage de copolymères à blocs, ont été réalisés. Ce progrès est motivé par le fait que les films auto-assemblés possèdent des applications en biologie, photonique, adhésion. Le sujet initial de thèse est la fabrication des films structurés en nid d’abeilles formés par un bloc de copolymère contenant une partie hydrophobe ( à peu près 90%) et une partie hydrophile (10%) qui peuvent s’auto-organiser en nid d’abeilles. Les films de polymères préparés seront ultérieurement à la base d’une étude de complexation avec des métaux. Ceci sert à décontaminer les eaux usées des métaux ou pesticides. Durant ces années de thèse, une méthodologie d’analyse de surface est détaillée pour comprendre la topographie de ces films ainsi que la chimie de surface de ces derniers. Pour cette raison, divers techniques d’analyses sont utilisées pour décrire vigoureusement la surface de ces films afin d’optimiser ces films pour complexer les contaminants à origine industrielle.Une des techniques d’analyse de surface, i.e. TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectroscopy), a prouvé être un outil efficace pour caractériser chimiquement la composition élémentaire et moléculaire de l’extrême surface et en profondeur. Cette technique était la technique de base de ces études. Elle la permis de décrire les empreintes spectrales ainsi que la distribution en surface et en profondeur de chaque polymère dans les films élaborés en nid d’abeilles
Since its introduction in 1994, the preparation of ordered porous polymer films by the breath figure “BF” method has received a considerable interest. Self-organized porous polymer films, with pores ordered into a hexagonal pattern, can be elaborated by a fast solvent evaporation method under a humid atmosphere, also called “Breath Figure” approach. The honeycomb films have found a panel of perspective applications ranging from materials with optical properties, biomaterial sensors, and scaffold for tissue engineering or highly hydrophobic surfaces. The main objective of this PhD thesis project is the fabrication of sensitive hierarchically self-organized bio inspired films based on organic compound trapping block copolymers. It is worth noting that one of the advantages of using block copolymer structure is that the first block confers the hydrophobic character, required for the elaboration and stability of HC structure, and the second block could provide an additional functionality such as hydrophilicity, stimuli-responsive character or trapping of targeted molecules (especially metals).During this thesis, a methodology of surface analysis is performed in order to understand the topography of these films as well as its surface chemistry. For this reason, various analytical techniques are used to describe the surface of these films vigorously in order to optimize these films to complex industrial contaminants.One of the techniques of surface analysis, i.e. TOF-SIMS (Time of Flight-Secondary Ion Mass Spectroscopy), has proved to be an effective tool for chemical characterization of the surface and in depth. This technique was the basic technique of our studies. It allowed the description of spectral finger prints as well as the distribution on the surface and in depth of each polymer in the structured films
APA, Harvard, Vancouver, ISO, and other styles
17

Yu, Zhaohui Crocker Malcolm J. "Static, dynamic and acoustical properties of sandwich composite materials." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/YU_ZHAOHUI_54.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shafizadeh, Jahan Emir. "Processing and characterization of honeycomb composite systems /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/9830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Martin, Cary Joseph. "Prepreg effects on honeycomb composite manufacturing /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/9861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bianchi, Gabriel. "Structural performance of spacecraft honeycomb panels." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/333288/.

Full text
Abstract:
Honeycomb sandwich structures (commonly referred to as honeycomb sandwich panels) have found wide spread application in the aerospace industry thanks to their excellent properties, in particular their high strength-to-weight and high stiffness-to-weight ratios. Surrey Satellite Technology Ltd. (SSTL), like many other space companies, often use honeycomb sandwich panels as part of the primary and secondary structures of the small satellites they develop. Although honeycomb panels have been used for the past 50 years gaining a better understanding of these sandwich structures, and the methods and solutions used to produce structural assemblies from them is still a major concern in the aerospace industry. Whether directly or indirectly, there are still significant research efforts ongoing that affect these areas. This work focuses on some of these issues and covers several research fields including material science, tribology and adhesive bonding technology. The first area of focus of this work deals with the structural performance of honeycomb panels alone and mainly concentrates on hexagonal honeycomb cores. An experimental investigation using the rail shear test was conducted to study the shear behaviour of hexagonal honeycomb cores. This involved both static and fatigue tests using numerous honeycomb panel test samples with the loading direction at various angles to the core ribbon. From these tests it was found that core shear strength did not have a linear relationship with loading orientation and that contrary to what is commonly assumed the transverse direction (to the ribbon) is not always necessarily the weakest orientation. The optimal design and performance of the load introduction points was the second area of focus for this work which covers equipment inserts and bolted joints. Two types of inserts where investigated in this work: hot bonded inserts and cold bonded inserts. A study on hot bonded and cold bonded inserts was conducted to assess their performance and effectively compare the two insert systems. A large portion of the study was experimental and involved carrying out numerous insert pull-out tests to measure static pull strength capability. From the study it was found that contrary to what was expected cold bonded potted inserts outperformed the hot bonded inserts in terms of static strength capability. Using finite element it was found that this was due to the different filler materials used for the two insert systems. The last area covered in this work concerns friction grip bolted joint between honeycomb panels. Here a simple method to analyze the efficiency of shear joint units is proposed. An extensive test campaign was also carried out to determine the influence of various parameters on the friction coefficient. Surface abrasion was found to be a reliable way of achieving high values of friction coefficient.
APA, Harvard, Vancouver, ISO, and other styles
21

Liang, T. "Electrohydrodynamic forming of honeycomb-like polymeric structures." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1464210/.

Full text
Abstract:
In this dissertation, polyethylene oxide (PEO) and ethyl cellulose (EC) have been chosen as model polymers to investigate different aspects of electrohydrodynamic processing and forming. In the first part of the work, electrospraying of PEO was attempted choosing a wide range of single solvents and mixed solvents. The selection of solvents affects the solubility and spinnability of PEO and the morphology of electrospun fibres. In the second part of the research the creation of 3D nanofibrous structures using electrospinning of PEO was investigated. The results demonstrate how the process is influenced by physical and processing parameters. It is reported that electrospun polymer nanofibres self-assemble into three dimensional honeycomb-like structures. The underlying mechanism was studied by varying the polymer solution concentration, collecting substrates and collection distance. The polymer solution concentration was found to have a significant effect on the size of the electrospun nanofibres. The nature of the collection substrate and the magnitude of the collection distance affect the electric field strength, the evaporation of solvent and the discharging of nanofibres. Consequently both the collection substrate and the collection distance had a significant influence on the self-assembly of nanofibres. In the third part of the work, the ways in which relative humidity (RH) plays a key role in the formation of porous structures was investigated using the hydrophilic polymer (PEO) and the hydrophobic polymer (EC). The generation of a 3D honeycomb-like structure was achieved using PEO polymer when RH was increased to between 53% and 93%. The optimum RH was found to be 73%. But efforts to generate 3D honeycomb-like structures using EC were unsuccessful throughout the range of RH investigated (53% - 93%). High speed camera imaging has been an important feature of the work carried out in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
22

Copenhaver, David C. "Thermal characterization of honeycomb core sandwich structures." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-11182008-063547/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wong, Kok Hou Centre for Advanced Macromolecular Design Faculty of Engineering UNSW. "Honeycomb structured porous film from amphiphilic block copolymers for biomedical applications." Awarded by:University of New South Wales. Centre for Advanced Macromolecular Design, 2008. http://handle.unsw.edu.au/1959.4/41493.

Full text
Abstract:
In recent times, it was divulged that highly ordered honeycomb structured porous films from a variety of polymers could be fabricated by breath figures (water droplets) templating technique. In contrast to existing macroporous fabrication techniques, this technique is simple, more versatile and very cost effective. Amphiphilic block copolymers composed of a hydrophobic and a hydrophilic block were employed in this research to examine the process of porous film formation and the outcome of films generated using breath figure technique. A customized film casting system, established according to the casting parameters affecting the outcome of films was used to generate honeycomb structured porous films for the studies. The casting method best suited to generate highly ordered honeycomb structured porous films and the procedures to manipulate the size of the pores in films generated from amphiphilic block copolymers were also investigated and identified. Analyses into the formation process of the honeycomb structured porous films revealed that the airflow casting method where the cast of polymer solution was supplied with a flow of moist air was the most suitable method to generate highly ordered honeycomb structured porous films from amphiphilic block copolymers. Variations to the casting conditions of the airflow casting method such as the rate of moist airflow could only provide limited alterations to the size of pores on films generated. However, changes to the chemical system of the casting solution such as the concentration and the molecular weight of polymers in the polymer solvent was more prominent in manipulating the size of pores in the generated films. On the other hand, any extreme variations to either the physical conditions or the chemical system could devastate the hexagonal arrangement of pores in these films. In the synthesis of amphiphilic block copolymers in this research, RAFT polymerization technique was used to generate the hydrophobic polymer block followed by the subsequent chain extension polymerization of the hydrophilic polymer block. The polymerization 'process, especially the hydrophilic chain extension polymerization, was investigated in details. It was established that there were significant dependence on the composition of the initial polymer block used, particularly the molecular weight and the type of chain transfer (RAFT) end group in the hydrophobic polymer chain. Incompatible RAFT end group and high polymer molecular weights of the initial block usually lead to slower rate of subsequent chain extension coupled with increased terminations. These copolymers generated were usually bimodal in molecular weight distributions and broad in polydispersity indexes. Honeycomb structured porous films generated from one of these amphiphilic block copolymers were assessed as scaffoldings for cell culture to regenerate cells. In particular, the effects of cellular attachments and proliferations on the honeycomb porous structures were investigated. The assessment of these honeycomb structured porous films indicated that not only were these films not cytotoxic but they also enhanced the quantity of cellular proliferation (2.7x) when used as cell culture substrate compared to standard non-porous polystyrene cell culture surfaces. Finally, this research had shown a simple way to generate a new class of highly ordered porous material that could be customized individually for a wide range of applications. The synthesis of amphiphilic block copolymers to generate these films could be achieved by RAFT polymerization with a board selection of polymers choices according to applications. A porous cell substrate such as honeycomb structured porous films could enhance cellular growth when used as a cell culture substrate.
APA, Harvard, Vancouver, ISO, and other styles
24

Papka, Scott Duane. "In-plane uniaxial and biaxial crushing of a polycarbonate honeycomb /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Church, Benjamin Cortright. "High conductivity alloys for extruded metallic honeycomb." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/21283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Seay, Wesley Daniel. "Capillary rheometric evaluation of honeycomb extrusion pastes." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/18951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Masters, Iain George. "Deformation mechanisms in honeycombs." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Maheri, M. R. "Vibration damping in composite/honeycomb sandwich beams." Thesis, University of Bristol, 1991. http://hdl.handle.net/1983/d96ba3e9-edb0-4a07-ac6e-69328ed22678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hoemann, John M. "Experimental evaluation of structural composites for blast resistant design." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5045.

Full text
Abstract:
Thesis (M.S.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 9, 2009) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
30

Hayes, Alethea M. "Compression behavior of linear cellular steel." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/32857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

MARINUCCI, GERSON. "Desenvolvimento de nucleo alveolar nao-plano aplicado a estruturas sanduiche." reponame:Repositório Institucional do IPEN, 1992. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10360.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:37:46Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:56:12Z (GMT). No. of bitstreams: 1 05298.pdf: 2728793 bytes, checksum: bd666bab4f8ed34cf76b4702d3b8e1e0 (MD5)
Dissertacao (Mestrado)
IPEN/D
Escola Politecnica, Universidade de Sao Paulo - POLI/USP
APA, Harvard, Vancouver, ISO, and other styles
32

Williams, Ebonée Porché Marie. "Process engineering of polynanomeric layered and infused composites /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sequeira, Lopes Tavares Sandra. "Optimisation of low pressure processing for honeycomb sandwich structures /." [S.l.] : [s.n.], 2009. http://library.epfl.ch/theses/?nr=4497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aydincak, Ilke. "Investigation Of Design And Analyses Principles Of Honeycomb Structures." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608998/index.pdf.

Full text
Abstract:
In this thesis, design and analyses of honeycomb structures are investigated. Primary goal is to develop an equivalent orthotropic material model that is a good substitute for the actual honeycomb core. By replacing the actual honeycomb structure with the orthotropic model, during the finite element analyses, substantial advantages can be obtained with regard to ease of modeling and model modification, solution time and hardware resources . To figure out the best equivalent model among the approximate analytical models that can be found in the literature, a comparison is made. First sandwich beams with four different honeycomb cores are modeled in detail and these are accepted as reference models. Then a set of equivalent models with the same dimensions is generated. The material properties of the equivalent models are taken from different studies performed in the literature. Both models are analyzed under the same loading and the boundary conditions. In finite element analyses, ANSYS finite element program is used. The results are compared to find out the best performing equivalent model. After three major analyses loops, decision on the equivalent model is made. The differences between the total reaction forces calculated by the equivalent model and the actual honeycomb model are all found to be within 10%. The equivalent model gives stress results at the macro-scale, and the local stresses and the strains can not be determined. Therefore it is deemed that for stress analysis, equivalent model can be used during the preliminary design phase. However, the equivalent model can be used reliably for deflection analysis, modal analysis, stiffness determination and aero-elastic analysis.
APA, Harvard, Vancouver, ISO, and other styles
35

Min, Eun Hee Centre for Advanced Macromolecular Design Faculty of Engineering UNSW. "Fabrication of honeycomb structured porous membranes for biological application." Awarded by:University of New South Wales. Centre for Advanced Macromolecular Design, 2010. http://handle.unsw.edu.au/1959.4/44823.

Full text
Abstract:
This thesis studies the synthesis of diverse architectures of polymers via the reversible addition fragmentation chain transfer (RAFT) polymerisation process that is one of the most novel and versatile controlled polymerisation techniques. Star polymers, comb polymers, amphiphilic block copolymers, and random copolymers were utilised to fabricate porous films with hexagonal arrangement via a ???bottom-up??? engineering approach, namely a ???breath figure??? technique. The quality (i.e. pore regularity and pore size) of the films was optimised by controlling casting variables including humidity, airflow, concentration of polymer solution, polymer architecture, molecular weight of polymer, substrate, and casting volume. Porous membranes were chemically crosslinked to improve their mechanical strength if required. Furthermore, chemical surface modification of porous films was performed by grafting desired polymer (i.e. PNIPAAm or PAGA) via RAFT polymerisation. The RAFT groups present in the films play a role as anchoring sites for polymerisation, thus the complex initiator immobilising can be avoided in our system. The desired polymer grafting is able to enhance wettability and provide binding sites for adhesion and proliferation of cells. The topography of ungrafted and grafted films was analysed using optical microscopy, scanning electron microscopy, atomic force microscopy, confocal microscopy, ATR-FTIR, and XPS.
APA, Harvard, Vancouver, ISO, and other styles
36

Simula, Leon. "Homogenization theory for structures of honeycomb and chessboard types /." Luleå, 2002. http://epubl.luth.se/1402-1544/2002/48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Oh, Raymond H. "The influence of honeycomb dies on paste extrusion mechanics." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/19029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Boucher, Marc-Antoine C. J. "Honeycombs with structured core for enhanced damping." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/20516.

Full text
Abstract:
Honeycomb sandwich panels, formed by bonding a core of honeycomb between two thin face sheets, are in wide use in aerospace, automotive and marine applications due to their well-known excellent density-specific properties. There are many technological methods of damping vibrations, including the use of inherently lossy materials such as viscoelastic materials, viscous and friction damping and smart materials such as piezoelectrics. Some have been applied to damping of vibrations, in particular to sandwich panel and honeycomb structures, including viscoelastic inserts in the cell voids. Complete filling of the cell with foam, viscoelastic or particulate fillers have all been demonstrated to improve damping loss in honeycombs. However, the use of an additional damping material inside the core of a sandwich panel increases its mass, which is often deleterious and may also lead to a significant change in dynamic properties. The work presented in this thesis explores the competing demands of vibration damping and minimum additional mass in the case of secondary inserts in honeycomb-like structures. The problem was tackled by initially characterising the main local deformation mechanism of a unit cell within a sandwich panel subjected to vibration. Out-of-plane bending deformation of the honeycomb unit cell was shown to be the predominant mode of deformation for most of the honeycomb cells within a sandwich panel. The out-of-plane bending deformation of the honeycomb cells results in relatively high in-plane deformation of the cells close to the skins of the sandwich panels. It was also highlighted that the magnitude and loading of the honeycomb unit cell are dependent on its location within the honeycomb or sandwich panel and the mode shape of the panel. An optimisation study was carried out on diverse honeycomb unit cell geometries to find locations at which the relative displacement between the honeycomb cell walls of the void is maximal under in-plane loadings. These locations were shown to be dependant of the nature of the loading, i.e. in-plane tension/compression or in-plane shear loading of the honeycomb unit cell and the unit cell geometry. Analytical expressions and finite element analyses were used to investigate the partial filling of the honeycomb unit cell with a damping material, in this case a viscoelastic elastomer, in the target locations identified previously where the relative displacement between the honeycomb cell walls is maximal. Damping inserts in the form of ligaments partially filling the honeycomb cell void have shown to increase the density-specific loss modulus by 26% compared to cells completely filled with damping material for in-plane tension/compression loading. The form of the damping insert itself was then analysed for enhancement of the dissipation provided by the damping material. The shear lap joint (SLJ) damping insert placed in the location where the relative displacement between the honeycomb cell walls of the void is maximal under in-plane loadings was characterised with very significant damping improvements compared to honeycomb cells completely filled with viscoelastic material. A case study of a cantilever honeycomb sandwich panel with embedded SLJ damping inserts demonstrated their efficiency in enhancing the loss factor of the structure for minimum added mass and marginal variation of the first modal frequency of the structure. Partial filling of the cells of the honeycomb core was shown to be the most efficient at increasing damping on a density basis.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Junjie. "The mechanics of foams and honeycombs." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Balawi, Shadi Omar. "Effective Mechanical Behavior of Honeycombs: Theoretical and Experimental Studies." Cincinnati, Ohio : University of Cincinnati, 2007. http://rave.ohiolink.edu/etdc//view?acc_num=ucin1179319913.

Full text
Abstract:
Thesis (Ph.D.)--University of Cincinnati, 2007.
Advisor: Dr. Jandro L. Abot. Title from electronic thesis title page (viewed June 29, 2010). Keywords: Honeycomb Structures; Mechanical Properties; Cellular Structures. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
41

Lee, Hoon. "Drop-weight and ballistic impact of honeycomb composite sandwich structures." Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/7141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Foreman, Cory. "Nondestructive detection and characterization of damages in honeycomb composite structures." [Ames, Iowa : Iowa State University], 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ramanathan, Sathish Kumar. "Sound transmission properties of honeycomb panels and double-walled structures." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96538.

Full text
Abstract:
Sandwich panels with aluminium face sheets and honeycomb core material have certain advantages over panels made of wood. Some of the advantages of these constructions are low weight, good moisture properties, fire resistance and high stiffness to-weight ratio etc. As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist during early design stages. In this thesis, tools are developed for predicting the sound transmission through honeycomb panels, typical for inner floors in trains and later through double-walled structures typical for rail-vehicles, aircrafts and ships. The sandwich theory for wave propagation and standard orthotropic plate theory is used to predict the sound transmission loss of honeycomb panels. Honeycomb is an anisotropic material which when used as a core in a sandwich panel, results in a panel with anisotropic properties. In this thesis, honeycomb panels are treated as being orthotropic and the wavenumbers are calculated for the two principal directions. The wavenumbers are then used to calculate the sound transmission using standard orthotropic theory. These predictions are validated with results from sound transmission measurements. The influence of constrained layer damping treatments on the sound transmission loss of these panels is investigated. Results show that, after the damping treatment, the sound transmission loss of an acoustically bad panel and a normal pane lare very similar. Further, sound transmission through a double-leaf partition based on a honeycomb panel with periodic stiffeners is investigated. The structural response of the periodic structure due to a harmonic excitation is expressed in terms of a series of space harmonics and virtual work theory is applied to calculate the sound transmission. The original model is refined to include sound absorption in the cavity and to account for the orthotropic property of the honeycomb panels. Since the solution of the space harmonic analysis is obtained in a series form, a sufficient number of terms has to be included in the calculation to ensure small errors. Computational accuracy needs to be balanced with computational cost as calculation times increases with the number of terms. A new criterion is introduced which reduces the computational time by up to a factor ten for the panels studied. For all the double-leaf systems analysed, the sound transmission loss predictions from the periodic model with the space harmonic expansion method are shown to compare well with laboratory measurements.

QC 20120607

APA, Harvard, Vancouver, ISO, and other styles
44

Othman, Abdul Rahim. "Quasi-static and impact characteristics of honeycomb composite sandwich structures." Thesis, University of Leeds, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Soliman, Hazem. "Mechanical Properties of Cellular Core Structures." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/70456.

Full text
Abstract:
Cellular core structures are the state-of-the-art technology for light weight structures in the aerospace industry. In an aerospace product, sandwich panels with cellular core represent the primary structural component as a given aerospace product may contain a large number of sandwich panels. This reveals the necessity of understanding the mechanical behavior of the cellular core and the impact of that behavior on the overall structural behavior of the sandwich panel, and hence the final aerospace product. As the final aerospace product must go through multiple qualification tests to achieve a final structure that is capable of withstanding all environments possible, analyzing the structure prior to testing is very important to avoid any possible failures and to ensure that the final design is indeed capable of withstanding the loads. To date, due to the lack of full understanding of the mechanical behavior of cellular cores and hence the sandwich panels, there still remains a significant lack of analytical capability to predict the proper behavior of the final product and failures may still occur even with significant effort spent on pre-test analyses. Analyzing cellular core to calculate the equivalent material properties of this type of structure is the only way to properly design the core for sandwich enhanced stiffness to weight ratio of the sandwich panels. A detailed literature review is first conducted to access the current state of development of this research area based on experiment and analysis. Then, one of the recently developed homogenization schemes is chosen to investigate the mechanical behavior of heavy, non-corrugated square cellular core with a potential application in marine structures. The mechanical behavior of the square cellular core is then calculated by applying the displacement approach to a representative unit cell finite element model. The mechanical behavior is then incorporated into sandwich panel finite element model and in an in-house code to test the predicted mechanical properties by comparing the center-of-panel displacement from all analyses to that of a highly detailed model. The research is then expanded to cover three cellular core shapes, hexagonal cores made of corrugated sheets, square cores made of corrugated sheets, and triangular cores. The expansion covers five different cell sizes and twenty one different core densities for each of the core shapes considering light cellular cores for space applications, for a total of 315 detailed studies. The accuracy of the calculated properties for all three core shapes is checked against highly detailed finite element models of sandwich panels. Formulas are then developed to calculate the mechanical properties of the three shapes of cellular cores studied for any core density and any of the five cell sizes. An error analysis is then performed to understand the quality of the predicted equivalent properties considering the panel size to cell size ratio as well as the facesheet thickness to core thickness ratio. The research finally expanded to understand the effect of buckling of the unit cell on the equivalent mechanical property of the cellular core. This part of the research is meant to address the impact of the local buckling that may occur due to impact of any type during the manufacturing, handling or assembly of the sandwich panels. The variation of the equivalent mechanical properties with the increase in transverse compression load, until the first folding of the unit cell is complete, is calculated for each of the three core shapes under investigation.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Zhuang. "Vibration and acoustical properties of sandwich composite materials /." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Fall/Dissertation/LI_ZHUANG_26.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hornig, Klaus H. Flowers George T. "Heuristic optimization methods for the characterization of dynamic mechanical properties of composite materials." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/HORNIG_KLAUS_7.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Robinson, Justin Mark. "Analytical and experimental study of FRP honeycomb sandwich panels with sinusoidal core." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=2093.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2001.
Title from document title page. Document formatted into pages; contains xi, 127 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 127).
APA, Harvard, Vancouver, ISO, and other styles
49

Ghazali, Emna, and Emna Ghazali. "Mechanical performance of adhesively bonded repairs in honeycomb composite sandwich structures." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/37713.

Full text
Abstract:
En service, les pièces aéronautiques en matériaux composites et structures sandwiches subissent des dommages qui nécessitent des réparations. Les réparations par patch interne en biseau, en escalier ou par combinaison des deux offrent une excellente restauration de la résistance mécanique pour ces structures composites. Cependant, l’environnement de réparation peut se révéler être un défi de taille quant à leur mise en œuvre, au choix des paramètres géométriques (angle de biseau, nombre de plis extra), à leur comportement mécanique sous différents chargements ainsi qu’à leur processus d’endommagement. Cette thèse présente une étude expérimentale et numérique (éléments finis) du comportement mécanique de réparations par patch interne effectuées sur des structures avec des peaux en composites à renforts tissés fabriquées hors autoclave et âme en Nomex en nid d’abeille. Afin de déterminer l’effet de différents paramètres géométriques sur la résistance de la réparation et de comprendre son comportement mécaniqueet son processus d’endommagement, une série de tests de caractérisation sous différents chargements (traction, compression, flexion) a été effectuée sur des structures sandwiches faite avec deux matériaux composites tissés pour la peau : soit du composite tissé taffetas (PW) ou satin de 8 (8HS) Des simulations numériques ont été effectuées afin de prédire le comportement mécanique de la réparation. Cette étude numérique a été effectuée en plusieurs étapes. Un premier modèle 2D qui suppose que la colle ait un comportement linéaire élastique a été développé et permet d’étudier la distribution des contraintes dans le joint de colle pour différentes configurations de réparation rectangulaire. Ensuite, le modèle 2D est modifié pour tenir compte du comportement élastoplastique de la colle et ceci permet de prédire le comportement mécanique d’une réparation rectangulaire jusqu’à la rupture. Par la suite, un modèle 3D est développé pour prédire le comportement de réparations circulaires sous des chargements de compression. Ce modèle tient compte de l’endommagement progressif des peaux en composite. Les résultats de ces simulations numériques sont comparés par la suite aux mesures expérimentales. Les modèles par éléments finis, avec une loi de comportement élastoplastique pour le joint de colle, permettent une estimation adéquate de la résistance ainsi que de l’endommagement des structures sandwiches réparées. Une étude paramétrique a eu lieu afin d’étudier l’effet de différents paramètres géométriques sur la résistance de la réparation. La mise en œuvre et la détermination de la performance mécanique des réparations par patch interne des structures sandwiches est une tâche complexe avec de multiples paramètres de matériaux et de procédés. D’une manière générale, cette thèse contribue à une meilleure compréhension du comportement mécanique des structures sandwiches réparées et de leur processus d’endommagement. Les modèles par éléments finis développés dans ces travaux ont été validés expérimentalement et des simulations paramétriques ont contribué à une meilleure compréhension de l’influence des différents paramètres géométriques sur la résistance de la réparation par patch interne.
En service, les pièces aéronautiques en matériaux composites et structures sandwiches subissent des dommages qui nécessitent des réparations. Les réparations par patch interne en biseau, en escalier ou par combinaison des deux offrent une excellente restauration de la résistance mécanique pour ces structures composites. Cependant, l’environnement de réparation peut se révéler être un défi de taille quant à leur mise en œuvre, au choix des paramètres géométriques (angle de biseau, nombre de plis extra), à leur comportement mécanique sous différents chargements ainsi qu’à leur processus d’endommagement. Cette thèse présente une étude expérimentale et numérique (éléments finis) du comportement mécanique de réparations par patch interne effectuées sur des structures avec des peaux en composites à renforts tissés fabriquées hors autoclave et âme en Nomex en nid d’abeille. Afin de déterminer l’effet de différents paramètres géométriques sur la résistance de la réparation et de comprendre son comportement mécaniqueet son processus d’endommagement, une série de tests de caractérisation sous différents chargements (traction, compression, flexion) a été effectuée sur des structures sandwiches faite avec deux matériaux composites tissés pour la peau : soit du composite tissé taffetas (PW) ou satin de 8 (8HS) Des simulations numériques ont été effectuées afin de prédire le comportement mécanique de la réparation. Cette étude numérique a été effectuée en plusieurs étapes. Un premier modèle 2D qui suppose que la colle ait un comportement linéaire élastique a été développé et permet d’étudier la distribution des contraintes dans le joint de colle pour différentes configurations de réparation rectangulaire. Ensuite, le modèle 2D est modifié pour tenir compte du comportement élastoplastique de la colle et ceci permet de prédire le comportement mécanique d’une réparation rectangulaire jusqu’à la rupture. Par la suite, un modèle 3D est développé pour prédire le comportement de réparations circulaires sous des chargements de compression. Ce modèle tient compte de l’endommagement progressif des peaux en composite. Les résultats de ces simulations numériques sont comparés par la suite aux mesures expérimentales. Les modèles par éléments finis, avec une loi de comportement élastoplastique pour le joint de colle, permettent une estimation adéquate de la résistance ainsi que de l’endommagement des structures sandwiches réparées. Une étude paramétrique a eu lieu afin d’étudier l’effet de différents paramètres géométriques sur la résistance de la réparation. La mise en œuvre et la détermination de la performance mécanique des réparations par patch interne des structures sandwiches est une tâche complexe avec de multiples paramètres de matériaux et de procédés. D’une manière générale, cette thèse contribue à une meilleure compréhension du comportement mécanique des structures sandwiches réparées et de leur processus d’endommagement. Les modèles par éléments finis développés dans ces travaux ont été validés expérimentalement et des simulations paramétriques ont contribué à une meilleure compréhension de l’influence des différents paramètres géométriques sur la résistance de la réparation par patch interne.
In service, aeronautical components made of composite materials and sandwich structures are subject to type of damages that require repairs. Adhesively bonded repairs (scarf-scarf, step-step or scarf-step) offer an excellent mechanical strength recovery for these composite structures. However, the repair environment can be a significant challenge in terms of the choice of geometrical parameters (scarf angle, addition of an overply), damage process parameters and mechanical behavior under different loads.This thesis presents both experimental and numerical investigations of the mechanical behavior of internal patch repairs carried-out on Nomex honeycomb composite sandwich structures. The skins use an out-of-autoclave woven fabric made of carbon-epoxy composite materials. In order to determine the effect of different geometric parameters on the resistance of the internal patch repair and to better understand its mechanical behavior and damage processes, a series of mechanical tests under different loads (tensile, compression, bending) is conducted on the repaired sandwich panels made with either plain weave or 8 harness satin textile composites. Numerical simulations were carried out, in several stages, in order to determine the mechanical behavior of the repair. First, a 2D model that assumes a linear elastic behavior of the adhesive film was developed. This simple model allows to study the distribution of the stresses in the adhesive joint for different configurations of rectangular patch repair. Then, the 2D model is modified in order to account for the elastoplastic behavior of the adhesive film. The latter allows to predict the mechanical behavior of a rectangular internal patch repair until rupture. Subsequently, a 3D model is developed to predict the mechanical behavior of circular internal patch repairs under compressive loadings. This model takes into account the progressive damage and failure of the woven fabric skins. The results of these numerical simulations are validated by comparing them to experimental measurements. The finite element models that account for the elastoplastic behavior law for the adhesive joint allow predictions of the strength as well as the damage morphology of the repaired sandwich structures. A parametric study has also been conducted in order to determine the influence of the geometrical design parameters in the repair strength. Processing and assessment of the mechanical performance of internal patch repairs on sandwich structures is a complex task with multiple material and process parameters. In general, this thesis contributes to a better understanding of the mechanical behavior of adhesively bonded repaired sandwich structures and their damage process. The finite element models developed in this work and validated experimentally have contributed through parametric numerical simulations to an economical better understanding of the influence of different geometric parameters on the strength and failure of internal patch repaired sandwich panels.
In service, aeronautical components made of composite materials and sandwich structures are subject to type of damages that require repairs. Adhesively bonded repairs (scarf-scarf, step-step or scarf-step) offer an excellent mechanical strength recovery for these composite structures. However, the repair environment can be a significant challenge in terms of the choice of geometrical parameters (scarf angle, addition of an overply), damage process parameters and mechanical behavior under different loads.This thesis presents both experimental and numerical investigations of the mechanical behavior of internal patch repairs carried-out on Nomex honeycomb composite sandwich structures. The skins use an out-of-autoclave woven fabric made of carbon-epoxy composite materials. In order to determine the effect of different geometric parameters on the resistance of the internal patch repair and to better understand its mechanical behavior and damage processes, a series of mechanical tests under different loads (tensile, compression, bending) is conducted on the repaired sandwich panels made with either plain weave or 8 harness satin textile composites. Numerical simulations were carried out, in several stages, in order to determine the mechanical behavior of the repair. First, a 2D model that assumes a linear elastic behavior of the adhesive film was developed. This simple model allows to study the distribution of the stresses in the adhesive joint for different configurations of rectangular patch repair. Then, the 2D model is modified in order to account for the elastoplastic behavior of the adhesive film. The latter allows to predict the mechanical behavior of a rectangular internal patch repair until rupture. Subsequently, a 3D model is developed to predict the mechanical behavior of circular internal patch repairs under compressive loadings. This model takes into account the progressive damage and failure of the woven fabric skins. The results of these numerical simulations are validated by comparing them to experimental measurements. The finite element models that account for the elastoplastic behavior law for the adhesive joint allow predictions of the strength as well as the damage morphology of the repaired sandwich structures. A parametric study has also been conducted in order to determine the influence of the geometrical design parameters in the repair strength. Processing and assessment of the mechanical performance of internal patch repairs on sandwich structures is a complex task with multiple material and process parameters. In general, this thesis contributes to a better understanding of the mechanical behavior of adhesively bonded repaired sandwich structures and their damage process. The finite element models developed in this work and validated experimentally have contributed through parametric numerical simulations to an economical better understanding of the influence of different geometric parameters on the strength and failure of internal patch repaired sandwich panels.
APA, Harvard, Vancouver, ISO, and other styles
50

Bucci, Sara [Verfasser]. "On the elastic-plastic behaviour of regular honeycomb structures / Sara Bucci." Magdeburg : Universitätsbibliothek, 2018. http://d-nb.info/1158660065/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography