Academic literature on the topic 'Honeycomb structures Mechanical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Honeycomb structures Mechanical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Honeycomb structures Mechanical properties"

1

Avramov, Kostiantyn V., Borys V. Uspenskyi, and Ihor I. Derevianko. "Analytical Calculation of the Mechanical Properties of Honeycombs Printed Using the FDM Additive Manufacturing Technology." Journal of Mechanical Engineering 24, no. 2 (2021): 16–23. http://dx.doi.org/10.15407/pmach2021.02.016.

Full text
Abstract:
FDM 3D printed honeycombs are investigated. A honeycomb is composed of regular hexagonal cells. A honeycomb is 3D printed so that the fused filament runs along the walls of its cells. We emphasize that the thickness of these walls is one or two times the thickness of the fused filament. When calculating the mechanical properties of a honeycomb, its walls are considered as a Euler-Bernoulli beam bending in one plane. To describe honeycombs, a homogenization procedure is used, which reduces a honeycomb to a homogeneous orthotropic medium. An adequate analytical calculation of the mechanical properties of this medium is the subject of our research. Analytical formulae for calculating the mechanical properties of honeycombs are presented. To assess the adequacy of the calculation results, the analytical data are compared with the results of simulation in the commercial ANSYS package. For this, the mechanical properties of the honeycombs made of the ULTEM 9085 material are determined numerically. To assess these properties, from a large number of analytical formulae are selected those that predict them adequately. As a result of calculations, an analytical prediction of all mechanical properties is obtained, with the exception of the in-plane shear modulus of a honeycomb. This is due to the fact that to simulate such a shear modulus one has to use a three-dimensional theory that does not have an adequate analytical description. A thin aluminum honeycomb was considered. In the future, three-layer structures with such a honeycomb will be investigated. Analytical results for ULTEM 9085 and aluminum honeycombs are similar.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Xuefeng, Longkun Xu, Xiaochen Liu, Jinting Xu, Ping Hu, and Zheng-Dong Ma. "Theoretical prediction of mechanical properties of 3D printed Kagome honeycombs and its experimental evaluation." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 18 (2019): 6559–76. http://dx.doi.org/10.1177/0954406219860538.

Full text
Abstract:
Kagome honeycomb structure is proved to incorporate excellent mechanical and actuation performances due to its special configuration. However, until now, the mechanical properties of 3D printed Kagome honeycomb have not been investigated. Hence, the objective of this work is to explore some mechanical properties of 3D-printed Kagome honeycomb structures such as elastic properties, buckling, and so on. In this paper, the analytical formulas of some mechanical properties of Kagome honeycombs made of 3D-printed materials are given. Effective elastic moduli such as Young's modulus, shear modulus, and Poisson's ratio of orthotropic Kagome honeycombs under in-plane compression and shear are derived in analytical forms. By these formulas, we investigate the relationship of the elastic moduli, the relative density, and the shape anisotropy–ratio of 3D-printed Kagome honeycomb. By the uniaxial tensile testing, the effective Young's moduli of 3D printed materials in the lateral and longitudinal directions are obtained. Then, by the analytical formulas and the experimental results, we can predict the maximum Young's moduli and the maximum shear modulus of 3D-printed Kagome honeycombs. The isotropic behavior of 3D-printed Kagome honeycombs is investigated. We also derived the equations of the initial yield strength surfaces and the buckling surfaces. We found that the sizes of the buckling surfaces of 3D printed material are smaller than that of isotropic material. The efficiency of the presented analytical formulas is verified through the tensile testing of 3D printed Kagome honeycomb specimens.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, A. J., and D. L. McDowell. "In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs." Journal of Engineering Materials and Technology 126, no. 2 (2004): 137–56. http://dx.doi.org/10.1115/1.1646165.

Full text
Abstract:
In-plane mechanical properties of periodic honeycomb structures with seven different cell types are investigated in this paper. Emphasis is placed on honeycombs with relative density between 0.1 and 0.3, such that initial yield is associated with short column compression or bending, occurring prior to elastic buckling. Effective elastic stiffness and initial yield strength of these metal honeycombs under in-plane compression, shear, and diagonal compression (for cell structures that manifest in-plane anisotropy) are reported as functions of relative density. Comparison among different honeycomb structures demonstrates that the diamond cells, hexagonal periodic supercells composed of six equilateral triangles and the Kagome cells have superior in-plane mechanical properties among the set considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, Lu, Tianhua Wang, Chenwei He, Zhihui Sun, and Qing Peng. "Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures." Nanomaterials 9, no. 7 (2019): 1044. http://dx.doi.org/10.3390/nano9071044.

Full text
Abstract:
Boron nitride honeycomb structure is a new three-dimensional material similar to carbon honeycomb, which has attracted a great deal of attention due to its special structure and properties. In this paper, the tensile mechanical properties of boron nitride honeycomb structures in the zigzag, armchair and axial directions are studied at room temperature by using molecular dynamics simulations. Effects of temperature and strain rate on mechanical properties are also discussed. According to the observed tensile mechanical properties, the piezoelectric effect in the zigzag direction was analyzed for boron nitride honeycomb structures. The obtained results showed that the failure strains of boron nitride honeycomb structures under tensile loading were up to 0.83, 0.78 and 0.55 in the armchair, zigzag and axial directions, respectively, at room temperature. These findings indicated that boron nitride honeycomb structures have excellent ductility at room temperature. Moreover, temperature had a significant effect on the mechanical and tensile mechanical properties of boron nitride honeycomb structures, which can be improved by lowering the temperature within a certain range. In addition, strain rate affected the maximum tensile strength and failure strain of boron nitride honeycomb structures. Furthermore, due to the unique polarization of boron nitride honeycomb structures, they possessed an excellent piezoelectric effect. The piezoelectric coefficient e obtained from molecular dynamics was 0.702 C / m 2 , which was lower than that of the monolayer boron nitride honeycomb structures, e = 0.79 C / m 2 . Such excellent piezoelectric properties and failure strain detected in boron nitride honeycomb structures suggest a broad prospect for the application of these new materials in novel nanodevices with ultrahigh tensile mechanical properties and ultralight-weight materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Miranda, A., M. Leite, L. Reis, E. Copin, MF Vaz, and AM Deus. "Evaluation of the influence of design in the mechanical properties of honeycomb cores used in composite panels." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 6 (2021): 1325–40. http://dx.doi.org/10.1177/1464420720985191.

Full text
Abstract:
The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.
APA, Harvard, Vancouver, ISO, and other styles
6

Spratt, Myranda, Sudharshan Anandan, Rafid Hussein, et al. "Build accuracy and compression properties of additively manufactured 304L honeycombs." Rapid Prototyping Journal 26, no. 6 (2020): 1049–57. http://dx.doi.org/10.1108/rpj-08-2018-0201.

Full text
Abstract:
Purpose The purpose of this study is to analyze the build quality and compression properties of thin-walled 304L honeycomb structures manufactured by selective laser melting. Four honeycomb wall thicknesses, from 0.2 to 0.5 mm, were built and analyzed. Design/methodology/approach The density of the honeycombs was changed by increasing the wall thickness of each sample. The honeycombs were tested under compression. Differences between the computer-assisted design model and the as-built structure were quantified by measuring physical dimensions. The microstructure was evaluated by optical microscopy, density measurements and microhardness. Findings The Vickers hardness of the honeycomb structures was 209 ± 14 at 50 g load. The compression ultimate and yield strength of the honeycomb material were shown to increase as the wall thickness of the honeycomb samples increased. The specific ultimate strength also increased with wall thickness, while the specific yield stress of the honeycomb remained stable at 42 ± 2.7 MPa/g/cm3. The specific ultimate strength minimized near 0.45 mm wall thickness at 82 ± 5 MPa/g/cm3 and increased to 134 ± 3 MPa/g/cm3 at 0.6 mm wall thickness. Originality/value This study highlights a single lightweight metal structure, the honeycomb, built by additive manufacturing (AM). The honeycomb is an interesting structure because it is a well-known building material in the lightweight structural composites field but is still considered a relatively complex geometric shape to fabricate. As shown here, AM techniques can be used to make complex geometric shapes with strong materials to increase the design flexibility of the lightweight structural component industry.
APA, Harvard, Vancouver, ISO, and other styles
7

Fojtl, Ladislav, Soňa Rusnáková, and Milan Žaludek. "Influence of Honeycomb Core Compression on the Mechanical Properties of the Sandwich Structure." Applied Mechanics and Materials 486 (December 2013): 283–88. http://dx.doi.org/10.4028/www.scientific.net/amm.486.283.

Full text
Abstract:
This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Zong Hong, Xiao Yu Liu, Xi Shan Yue, Qun Yan, Jun Feng Sun, and Yong Juan Jing. "Out-of-Plane Mechanical Property Test on Titanium Honeycomb Cores." Advanced Materials Research 718-720 (July 2013): 1018–23. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1018.

Full text
Abstract:
As a typical cellular solid, the honeycomb core shows an orthotropic behavior in its mechanical properties. Engineering analysis often adopts a homogeneity assumption that honeycomb core is equivalent to an anisotropic continuum. Currently available cellular solid model cannot predict the physical properties of titanium honeycomb core with acceptable accuracy. Therefore, mechanical test must be carried out to obtain the mechanical properties of metallic honeycomb structures. This paper introduces the work on flatwise compression test and out-of-plane shear test on titanium honeycomb core structures in accordance to ASTM C 365-03and ASTM C 273-00. The out-of-plane stiffness and strength for titanium honeycomb cores with incircle diameter of 4.8mm and wall thickness of 0.05mm were obtained.
APA, Harvard, Vancouver, ISO, and other styles
9

Vesenjak, Matej, Andreas Öchsner, and Zoran Ren. "Evaluation of Thermal and Mechanical Filler Gas Influence on Honeycomb Structures Behavior." Materials Science Forum 553 (August 2007): 190–95. http://dx.doi.org/10.4028/www.scientific.net/msf.553.190.

Full text
Abstract:
In this paper the behavior of hexagonal honeycombs under dynamic in-plane loading is described. Additionally, the presence and influence of the filler gas inside the honeycomb cells is considered. Such structures are subjected to very large deformation during an impact, where the filler gas might strongly affect their behavior and the capability of deformational energy absorption, especially at very low relative densities. The purpose of this research was therefore to evaluate the influence of filler gas on the macroscopic cellular structure behavior under dynamic uniaxial loading conditions by means of computational simulations. The LS-DYNA code has been used for this purpose, where a fully coupled interaction between the honeycomb structure and the filler gas was simulated. Different relative densities, initial pore pressures and strain rates have been considered. The computational results clearly show the influence of the filler gas on the macroscopic behavior of analyzed honeycomb structures. Because of very large deformation of the cellular structure, the gas inside the cells is also enormously compressed which results in very high gas temperatures and contributes to increased crash energy absorption capability. The evaluated results are valuable for further research considering also the heat transfer in honeycomb structures and for investigations of variation of the base material mechanical properties due to increased gas temperatures under impact loading conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Hui, Ping Xu, and Suchao Xie. "Composite energy-absorbing structures combining thin-walled metal and honeycomb structures." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 231, no. 4 (2016): 394–405. http://dx.doi.org/10.1177/0954409716631579.

Full text
Abstract:
The energy-absorbing structure of a crashworthy railway vehicle was designed by combining the characteristics of thin-walled metal structures and aluminum honeycomb structures: finite element models of collisions involving energy-absorbing structures were built in ANSYS/LS-DYNA. In these models, the thin-walled metal structure was modeled as a plastic kinematic hardening material, and the honeycomb structure was modeled as an equivalent solid model with orthotropic–anisotropic mechanical properties. The analysis showed that the safe velocity standard for rail vehicle collisions was improved from 25 km/h to 45 km/h by using a combined energy-absorbing structure; its energy absorption exceeded the sum of the energy absorbed by the thin-walled metal structure and honeycomb structure when loaded separately, because of the interaction effects of thin-walled metal structure and aluminum honeycomb structure. For an aluminum honeycomb to the same specification, the composite structure showed the highest SEA when using a thin-walled metal structure composed of bi-grooved tubes, followed by that using single-groove tubes: that with a straight-walled structure had the lowest SEA.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!