Journal articles on the topic 'Honeycomb structures Mechanical properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Honeycomb structures Mechanical properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Avramov, Kostiantyn V., Borys V. Uspenskyi, and Ihor I. Derevianko. "Analytical Calculation of the Mechanical Properties of Honeycombs Printed Using the FDM Additive Manufacturing Technology." Journal of Mechanical Engineering 24, no. 2 (2021): 16–23. http://dx.doi.org/10.15407/pmach2021.02.016.
Full textZhu, Xuefeng, Longkun Xu, Xiaochen Liu, Jinting Xu, Ping Hu, and Zheng-Dong Ma. "Theoretical prediction of mechanical properties of 3D printed Kagome honeycombs and its experimental evaluation." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 18 (2019): 6559–76. http://dx.doi.org/10.1177/0954406219860538.
Full textWang, A. J., and D. L. McDowell. "In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs." Journal of Engineering Materials and Technology 126, no. 2 (2004): 137–56. http://dx.doi.org/10.1115/1.1646165.
Full textXie, Lu, Tianhua Wang, Chenwei He, Zhihui Sun, and Qing Peng. "Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures." Nanomaterials 9, no. 7 (2019): 1044. http://dx.doi.org/10.3390/nano9071044.
Full textMiranda, A., M. Leite, L. Reis, E. Copin, MF Vaz, and AM Deus. "Evaluation of the influence of design in the mechanical properties of honeycomb cores used in composite panels." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 6 (2021): 1325–40. http://dx.doi.org/10.1177/1464420720985191.
Full textSpratt, Myranda, Sudharshan Anandan, Rafid Hussein, et al. "Build accuracy and compression properties of additively manufactured 304L honeycombs." Rapid Prototyping Journal 26, no. 6 (2020): 1049–57. http://dx.doi.org/10.1108/rpj-08-2018-0201.
Full textFojtl, Ladislav, Soňa Rusnáková, and Milan Žaludek. "Influence of Honeycomb Core Compression on the Mechanical Properties of the Sandwich Structure." Applied Mechanics and Materials 486 (December 2013): 283–88. http://dx.doi.org/10.4028/www.scientific.net/amm.486.283.
Full textXie, Zong Hong, Xiao Yu Liu, Xi Shan Yue, Qun Yan, Jun Feng Sun, and Yong Juan Jing. "Out-of-Plane Mechanical Property Test on Titanium Honeycomb Cores." Advanced Materials Research 718-720 (July 2013): 1018–23. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1018.
Full textVesenjak, Matej, Andreas Öchsner, and Zoran Ren. "Evaluation of Thermal and Mechanical Filler Gas Influence on Honeycomb Structures Behavior." Materials Science Forum 553 (August 2007): 190–95. http://dx.doi.org/10.4028/www.scientific.net/msf.553.190.
Full textZhou, Hui, Ping Xu, and Suchao Xie. "Composite energy-absorbing structures combining thin-walled metal and honeycomb structures." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 231, no. 4 (2016): 394–405. http://dx.doi.org/10.1177/0954409716631579.
Full textEt. al., R. Karthikeyan,. "Finite Element Analysis of Honeycomb Sandwich Composite Structures With Various Joints." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 1S (2021): 531–35. http://dx.doi.org/10.17762/turcomat.v12i1s.1922.
Full textWang, Lijun, Kazuya Saito, You Gotou, and Yoji Okabe. "Design and fabrication of aluminum honeycomb structures based on origami technology." Journal of Sandwich Structures & Materials 21, no. 4 (2017): 1224–42. http://dx.doi.org/10.1177/1099636217714646.
Full textZhang, Sheng, Wei Chen, Deping Gao, Liping Xiao, and Longbao Han. "Experimental Study on Dynamic Compression Mechanical Properties of Aluminum Honeycomb Structures." Applied Sciences 10, no. 3 (2020): 1188. http://dx.doi.org/10.3390/app10031188.
Full textAlia, RA, J. Zhou, ZW Guan, Q. Qin, Y. Duan, and WJ Cantwell. "The effect of loading rate on the compression properties of carbon fibre-reinforced epoxy honeycomb structures." Journal of Composite Materials 54, no. 19 (2020): 2565–76. http://dx.doi.org/10.1177/0021998319900364.
Full textZakeri, A. A., and H. Talebi Mazraehshahi. "Experimental study on mechanical properties of aircraft honeycomb sandwich structures." EPJ Web of Conferences 6 (2010): 24003. http://dx.doi.org/10.1051/epjconf/20100624003.
Full textWang, Min, Xinming Qiu, and Xiong Zhang. "Mechanical properties of super honeycomb structures based on carbon nanotubes." Nanotechnology 18, no. 7 (2007): 075711. http://dx.doi.org/10.1088/0957-4484/18/7/075711.
Full textGao, Shuyue, Cao Wang, and Zhe Zhao. "Mechanical Properties of ZrO2 Honeycomb Sandwich Structures by 3D Printing." IOP Conference Series: Materials Science and Engineering 678 (November 27, 2019): 012018. http://dx.doi.org/10.1088/1757-899x/678/1/012018.
Full textLiu, Weidong, Honglin Li, Jiong Zhang, and Hongda Li. "Theoretical analysis on the elasticity of a novel accordion cellular honeycomb core with in-plane curved beams." Journal of Sandwich Structures & Materials 22, no. 3 (2018): 702–27. http://dx.doi.org/10.1177/1099636218768174.
Full textZhang, Xiaoming, Jinxiang Chen, Yoji Okabe, Peiwei Zhang, Xiaobing Xiong, and Xindi Yu. "Influence of honeycomb dimensions and forming methods on the compressive properties of beetle elytron plates." Journal of Sandwich Structures & Materials 22, no. 1 (2017): 28–39. http://dx.doi.org/10.1177/1099636217731993.
Full textGunes, Recep, Kemal Arslan, M. Kemal Apalak, and JN Reddy. "Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates." Journal of Sandwich Structures & Materials 21, no. 1 (2017): 211–29. http://dx.doi.org/10.1177/1099636216689462.
Full textJun, Hu, Ren Jianwei, Ma Wei, and Wang Aiguo. "Dynamic Mechanical Properties and Constitutive Model of Honeycomb Materials with Random Defects under Impact Loading." Shock and Vibration 2019 (June 2, 2019): 1–10. http://dx.doi.org/10.1155/2019/1087919.
Full textWen, Zhou, and Ming Li. "Compressive Properties of Functionally Graded Bionic Bamboo Lattice Structures Fabricated by FDM." Materials 14, no. 16 (2021): 4410. http://dx.doi.org/10.3390/ma14164410.
Full textLascano, Diego, Rene Guillen-Pineda, Luis Quiles-Carrillo, et al. "Manufacturing and Characterization of Highly Environmentally Friendly Sandwich Composites from Polylactide Cores and Flax-Polylactide Faces." Polymers 13, no. 3 (2021): 342. http://dx.doi.org/10.3390/polym13030342.
Full textIkonomov, P. G., A. Yahamed, P. D. Fleming, and A. Pekarovicova. "Design and testing 3D printed structures for bone replacements." Journal of Achievements in Materials and Manufacturing Engineering 2, no. 101 (2020): 76–85. http://dx.doi.org/10.5604/01.3001.0014.4922.
Full textNurimbetov, А. U., B. Myktybekov, S. A. Orynbayev, and M. A. Mezentsev. "DEFINITION METHODS MECHANICAL CHARACTERISTICS OF SOUND ABSORPTION STRUCTURES." Series of Geology and Technical Sciences 2, no. 446 (2021): 122–28. http://dx.doi.org/10.32014/2021.2518-170x.43.
Full textLi, Xiangcheng, Kang Li, Yuliang Lin, Rong Chen, and Fangyun Lu. "Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs." Shock and Vibration 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/3240651.
Full textZuhri, MYM, Y. Liao, QY Wang, and ZW Guan. "The energy absorbing properties of bamboo-based structures." Journal of Sandwich Structures & Materials 21, no. 3 (2017): 1032–54. http://dx.doi.org/10.1177/1099636217707171.
Full textHe, Xing Xing, Ying Liao, and Xiao Jun Liang. "Mechanical Properties Analysis on Honeycomb Sandwich Structure Considering Flexural Rigidity of Face Sheets." Advanced Materials Research 705 (June 2013): 216–22. http://dx.doi.org/10.4028/www.scientific.net/amr.705.216.
Full textBeloshenko, Victor, Yan Beygelzimer, Vyacheslav Chishko, et al. "Mechanical Properties of Flexible TPU-Based 3D Printed Lattice Structures: Role of Lattice Cut Direction and Architecture." Polymers 13, no. 17 (2021): 2986. http://dx.doi.org/10.3390/polym13172986.
Full textWANG, Lijun, Kazuya SAITO, You GOTOU, and Yoji OKABE. "A New Manufacturing Method for Honeycomb Structures and Their Mechanical Properties." Proceedings of the Materials and processing conference 2016.24 (2016): 709. http://dx.doi.org/10.1299/jsmemp.2016.24.709.
Full textNiu, Bin, and Bo Wang. "Directional mechanical properties and wave propagation directionality of Kagome honeycomb structures." European Journal of Mechanics - A/Solids 57 (May 2016): 45–58. http://dx.doi.org/10.1016/j.euromechsol.2015.12.003.
Full textMansour, Michel Theodor, Konstantinos Tsongas, and Dimitrios Tzetzis. "3D Printed Hierarchical Honeycombs with Carbon Fiber and Carbon Nanotube Reinforced Acrylonitrile Butadiene Styrene." Journal of Composites Science 5, no. 2 (2021): 62. http://dx.doi.org/10.3390/jcs5020062.
Full textAlia, RA, O. Al-Ali, S. Kumar, and WJ Cantwell. "The energy-absorbing characteristics of carbon fiber-reinforced epoxy honeycomb structures." Journal of Composite Materials 53, no. 9 (2018): 1145–57. http://dx.doi.org/10.1177/0021998318796161.
Full textMansour, Michel Theodor, Konstantinos Tsongas, and Dimitris Tzetzis. "The mechanical performance of 3D printed hierarchical honeycombs using carbon fiber and carbon nanotube reinforced acrylonitrile butadiene styrene filaments." MATEC Web of Conferences 318 (2020): 01049. http://dx.doi.org/10.1051/matecconf/202031801049.
Full textJędral, Arnold. "Review of Testing Methods Dedicated for Sandwich Structures with Honeycomb Core." Transactions on Aerospace Research 2019, no. 2 (2019): 1–14. http://dx.doi.org/10.2478/tar-2019-0006.
Full textPanda, Biranchi, Marco Leite, Bibhuti Bhusan Biswal, Xiaodong Niu, and Akhil Garg. "Experimental and numerical modelling of mechanical properties of 3D printed honeycomb structures." Measurement 116 (February 2018): 495–506. http://dx.doi.org/10.1016/j.measurement.2017.11.037.
Full textWang, Xinglong, Cheng Wang, Xin Zhou, et al. "Evaluating Lattice Mechanical Properties for Lightweight Heat-Resistant Load-Bearing Structure Design." Materials 13, no. 21 (2020): 4786. http://dx.doi.org/10.3390/ma13214786.
Full textTuo, Wanyong, Jinxiang Chen, Mengye Xu, Zhijie Zhang, and Zhensheng Guo. "Shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates." Journal of Sandwich Structures & Materials 22, no. 4 (2018): 1184–98. http://dx.doi.org/10.1177/1099636218782728.
Full textNguyen, Thuc Boi Huyen, and Hoc Thang Nguyen. "Lightweight Panel for Building Construction Based on Honeycomb Paper Composite/Core-Fiberglass Composite/Face Materials." Nano Hybrids and Composites 32 (April 2021): 15–23. http://dx.doi.org/10.4028/www.scientific.net/nhc.32.15.
Full textGrünewald, Jonas, Tilman Orth, Patricia Parlevliet, and Volker Altstädt. "Modified foam cores for full thermoplastic composite sandwich structures." Journal of Sandwich Structures & Materials 21, no. 3 (2017): 1150–66. http://dx.doi.org/10.1177/1099636217708741.
Full textKarakoç, Alp, and Jouni Freund. "Experimental studies on mechanical properties of cellular structures using Nomex® honeycomb cores." Composite Structures 94, no. 6 (2012): 2017–24. http://dx.doi.org/10.1016/j.compstruct.2012.01.024.
Full textYang, Li, Ola Harrysson, Harvey West, and Denis Cormier. "Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing." International Journal of Solids and Structures 69-70 (September 2015): 475–90. http://dx.doi.org/10.1016/j.ijsolstr.2015.05.005.
Full textGuo, Yanfeng, Meijuan Ji, Yungang Fu, Dan Pan, Xingning Wang, and Jianfen Kang. "Cushioning energy absorption of composite layered structures including paper corrugation, paper honeycomb and expandable polyethylene." Journal of Strain Analysis for Engineering Design 54, no. 3 (2019): 176–91. http://dx.doi.org/10.1177/0309324719847069.
Full textGuo, Chunxia, Dong Zhao, Zhanli Liu, et al. "The 3D-Printed Honeycomb Metamaterials Tubes with Tunable Negative Poisson’s Ratio for High-Performance Static and Dynamic Mechanical Properties." Materials 14, no. 6 (2021): 1353. http://dx.doi.org/10.3390/ma14061353.
Full textShi, Shanshan, Bingzhi Chen, and Zhi Sun. "Equivalent properties of composite sandwich panels with honeycomb–grid hybrid core." Journal of Sandwich Structures & Materials 22, no. 6 (2018): 1859–78. http://dx.doi.org/10.1177/1099636218789615.
Full textSun, Fangfang, Qing Zheng, Hualin Fan, and Daining Fang. "The Mechanical Properties of Hierarchical Truss-Walled Lattice Materials." International Journal of Applied Mechanics 09, no. 02 (2017): 1750027. http://dx.doi.org/10.1142/s1758825117500272.
Full textYang, Kai, Li Wu Liu, Kai Ping Yu, and Xiang Hao Kong. "Study on Three-Point Bending Mechanical Performance of Thin-Walled Super Alloy Honeycomb Sandwich with Penetrable Defects." Advanced Materials Research 314-316 (August 2011): 1203–9. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.1203.
Full textHussein, Rafid, Sudharshan Anandan, Myranda Spratt, et al. "Effective elastic moduli of metal honeycombs manufactured using selective laser melting." Rapid Prototyping Journal 26, no. 5 (2020): 971–80. http://dx.doi.org/10.1108/rpj-12-2018-0311.
Full textChen, Qiang, Nicola Pugno, Kai Zhao, and Zhiyong Li. "Mechanical properties of a hollow-cylindrical-joint honeycomb." Composite Structures 109 (March 2014): 68–74. http://dx.doi.org/10.1016/j.compstruct.2013.10.025.
Full textNaseer, Zainab, and Zaffar Khan. "Graphene Effect on Mechanical Properties of Sandwich Panel for Aerospace Structures." Key Engineering Materials 875 (February 2021): 121–26. http://dx.doi.org/10.4028/www.scientific.net/kem.875.121.
Full text